Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

A Quantum Interpretation of the View-Update Problem

Christian Flender

Faculty of Science and Technology,
Queensland University of Technology,
Level 8 / 126 Margaret Street,
Brisbane QLD 4000, Australia,
Email: c.flender@qut.edu.au

Abstract

The ANSI-SPARC architecture was proposed as a hi-
erarchical model for the implementation of Database
Management Systems (DBMS). A separation of ex-
ternal user views and shared base relations (concep-
tual schema) constitutes their logical independence,
i.e., external views are immune to changes of the con-
ceptual schema. Moreover, users can customize their
views independent of the conceptual schema. How-
ever, all updates to a base relation should be imme-
diately reflected in all views that reference the base
relation. Vice versa, if a view is updated, then the
underlying base relation should reflect the change.
Keeping views and base relations in sync came to
be known as the view-update problem. This paper
argues that view updates require the user to cause
a change. Prior to a view update user and view are
entangled. Entangled states cannot be reduced to fac-
tual states of user and base relation. It will be shown
that the view-update problem arises due to a view
update (causation) being irreducible to a functional
mapping between base relation and view (causality).

Keywords: ANSI-SPARC' architecture, view-update
problem, quantum entanglement, causation, causality

1 Introduction

As early as 1971, the Data Base Task Group (DBTG)
appointed by the Conference of Data Systems and
Languages (CODASYL) proposed a general architec-
ture for database systems (CODASYL 1971). This
proposal already recognized the need for several lev-
els of abstraction in order to deal with the diverging
needs of database stakeholders such as end-users, ap-
plication developers and administrators (DBAs). Al-
ready hierarchical or first-generation DBMS divided
their system into schema and subschema. The for-
mer was meant to provide a view for DBAs who
were mainly concerned with the definition of database
names, types of records and components of these
records. The schema was separated from the so called
subschemas, the part of the database as seen by users
or application programs. Then in 1975, with the rise
of relational or second-generation DBMS, which can
be traced back to E.F.Codd’s influential paper in 1970
(Codd 1970), the American National Standards Insti-
tute’s (ANSI) Standards Planning and Requirement
Committee (SPARC) produced a similar multi-level

Copyright (©2010, Australian Computer Society, Inc. This pa-
per appeared at the Twenty-First Australasian Database Con-
ference (ADC 2010), Brisbane, Australia, January 2010. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 104, Heng Tao Shen and Athman Bouguettaya,
Ed. Reproduction for academic, not-for profit purposes per-
mitted provided this text is included.

architecture with the same purpose, i.e., the provi-
sion of an implementation independent layer to iso-
late programs from underlying representational issues
(ANSI-SPARC 1975). The three-level ANSI-SPARC
architecture is a de facto standard for the implemen-
tation of relational DBMS and its relevance to infor-
mation systems continues to the present day.

The three-level architecture consists of an exter-
nal level, a conceptual level, and an internal level
(cf. Figure 1). The way users perceive data, their
personalized view (top-down), belongs to the exter-
nal level. The internal level abstracts from the way
the operating system accesses data (bottom-up), i.e.,
via data structures and file organisations. The con-
ceptual level provides a mapping between external
and internal level and thereby mediates between cus-
tomized user views and physical data implementa-
tion. Generally, at the conceptual level the concep-

External View 1 View 2 e View n
Level
I\.-'iew-unume prablem
Caonceptual Concaptual
Level Schema
Internal Internal
Lewal Schema
Physical Data ’)
Organisation Database

Figure 1: The ANSI-SPARC architecture divides a
DBMS into three levels. At the top the external
level consists of customized views and therefore in-
terfaces to end-users and application developers. At
the bottom the internal level abstracts from the phys-
ical data implementation. The conceptual level pro-
vides a mapping between external level and internal
level and thereby mediates between views and physi-
cal data organisation.

tual schema constitutes a community view, i.e., an un-
derlying representation shared by all external views.
It describes base relations (entities), attributes, re-
lationships and integrity constraints. Views at the
external level derive from the conceptual schema.
More precisely, views are the dynamic result of one or
more relational operations, i.e., selection, projection,

67

CRPIT Volume 104 - Database Technologies 2010

Cartesian product, union and set difference, acting
upon base relations. A separation of external user
views and shared base relations constitutes their log-
ical independence, i.e., external views are immune to
changes of the conceptual schema. Users can cus-
tomize their views at the external level independent
of the conceptual schema. However, all updates to a
base relation should be immediately reflected in all
views that reference the base relation. Vice versa, if
a view is updated, then the underlying base relation
should reflect the change. Keeping views and base re-
lations in sync came to be known as the view-update
problem.

There are several approaches attempting to solve
this problem of external-conceptual mapping (see re-
lated work in Section 4). However, none of these ap-
proaches has ever considered a view update at the
external level as a quantum-like cause (conditions for
change are necessary but not sufficient) being irre-
ducible to a determinate functional mapping (condi-
tions for change are necessary and sufficient) at the
conceptual level. This article aims to offer a quantum
interpretation of the view-update problem. It is ar-
gued that, prior to a view update, user and view are
entangled (user and view cannot be separated). The
change of a view itself is indeterminate, i.e., the state
of a view is determined by the outcome of an update
but not prior to it. Accordingly, changes being propa-
gated to the conceptual level do not necessarily trans-
late into determinate functional view mappings, i.e.,
the application of one or more relational operators
(selection, projection, Cartesian product, union and
set difference). Entangled states of user and view at
the external level are irreducible to states of user and
base relation at the conceptual level. Hence, quan-
tum entanglement offers a reasonable explanation of
the view-update problem.

The contribution of this paper is to show that the
interface between user and DBMS is not as clear cut
as the logical and physical independence of the ANSI-
SPARC architecture might suggest. Although the
ANSI-SPARC architecture claims to separate logic
from physics, it cannot separate the user from the
DBMS. User-view entanglement inseparably couples
user and DBMS. A view derives from a base relation;
a view update, however, often cannot be reduced to
changes at the conceptual level. What came to be
known as the view-update problem has a natural and
reasonable explanation. Views are not independent
from their implementation but rely on the user’s cau-
sation for their realization.

The next section introduces the view-update prob-
lem and shows where change propagation from exter-
nal to conceptual level breaks down. Then, in Section
3, user-view relationships will be shown to be entan-
gled and therefore quantum-like. Section 4 discusses
existing work related to the view-update problem, in
particular related to indeterminate updates (causa-
tion) at the external level and determinate updates
(causality) at the conceptual level. Finally, Section
5 concludes the article and gives an outlook towards
future work.

2 The View-Update Problem

The view-update problem arises at the interface be-
tween views at the external level and base relations at
the conceptual level (cf. Figure 1). The latter consti-
tutes a shared representation accessible by multiple
users and independent from storage space allocation
and index structures. At the conceptual level, the
DBMS manages base relations. A base relation is a
named relation, e.g., Staff, corresponding to an entity
in the real world. Concrete instances of a base rela-

68

tion, e.g., Staff member 001, are tuples and stored
physically in the database. A view, on the other
hand, is defined at the external level. It is the dy-
namic result of one or more relational operations!,
i.e., selection, projection, Cartesian product, union
and set difference, acting upon a base relation to pro-
duce another relation, e.g., Manager as a subset of
Staff. Hence, a view is a virtual or derived relation
in the sense that it belongs to the external level and
can be produced upon request by a particular user.
Views offer flexibility and security by hiding cer-
tain parts of the database from certain users, e.g.,
the view Manager doesn’t contain information about
board members. Furthermore, users can customize
their information needs. The same data can be seen
in different ways at the same time. Moreover, views
can simplify complex operations upon base relations.
Since changes of a base relation, e.g., adding at-
tributes or tuples, do not necessarily require changes
of views, they are considered to be logically inde-
pendent. Nevertheless, all updates of a base relation
should be immediately reflected in all views that ref-
erence the base relation. Vice versa, if a view is up-
dated, then the underlying base relation should prop-
agate the change. Here, the view-update problem
arises due to the fact that there are view updates
which do not translate into base relation updates so
that, eventually, the changed view equals the view of
a changed base relation. An update mapping does not
always exist, and even when it does exist, it may not
be unique (Codd 1975). Therefore, a change in the
view may not be reflected unambiguously by equiv-
alent changes in the base relation. In formal terms,

[v] wve v

'y 'y

Figure 2: The view-update problem refers to the syn-
chronization of external level and conceptual level. A
view is derived from a base relation by means of oper-
ators as defined in relational algebra. If a user causes
a view update this has to be propagated to the con-
ceptual level such that the changed view equals the
view projection of the changed base relation.

consider the state d of a base relation (cf. Figure 2).
This state is projected onto the external level by a
mapping V. V is functional, i.e., conditions for the
mapping are causally necessary and sufficient. Effec-
tively, V refers to one or more relational operations,
i.e., selection, projection, Cartesian product, union
and set difference, acting upon the base relation d to
produce a view V(d). If a user carries out a view up-
date u, then this results in the changed view u(V(d)).
Accordingly, at the conceptual level, there must be a
base relation update ¢,, such that it reflects the change
at the external level. Hence, the challenge is to find
a transformation

U — ty, (1)

For a proof showing that operators of relational algebra are
essentially equivalent in expressive power to relational calculus and
thus first-order logic see (Codd 1970).

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

where u(V(d)) = V(t,(d)). However, according to
the view-update problem, u — ¢, is indeterminate
for arbitrary mappings V. Put in another way, there
are view-updates v and mappings V for which exter-
nal level and conceptual level cannot be synchronized,
and, given v and V, there is no general rule for de-
termining synchronizability.

The following example illustrates the view-update
problem. Consider a simple base relation Staff.
The current state of the base relation is d =
Staff{(001,B1),(002,B2)}. The state d of the base re-
lation is composed of two tuples; the first value of each
tuple stands for the identification number of a staff
member. The second entry represents the department
number. A selection V' = ‘get Staff where depNo=B1’
defines the mapping that generates a view. The view
is meant to be a subset of all staff members, in par-
ticular managers working in department B1l. Conse-
quently, V(d) = Manager{(001,B1)}.

Now assume a user updates this view. For in-
stance, if he carries out v = ‘update Manager set
depNo=B3 where ID=001’, then this will change the
view such that u(V(d)) = Manager{(001,B3)}.

Accordingly, changes need to be done at the con-
ceptual level. A transformation v — t, is needed
which satisfies the constraint u(V(d)) = V(t,(d)) =
Manager{(001,B3)}. However, there is no transfor-
mation u — t,, where u(V(d)) = V(t,(d)) if the view
update u ‘interferes’ with the view mapping V. In
other words, the projection V' defines a view V(d)
by operating upon a base relation d. If an update u
upon V' (d) alters the view mapping V, then view and
base relation cannot be synchronized. For example,
consider the transformation for which the view up-
date u is applied at the conceptual level such that ¢,
= u = ‘update Staff set depNo=B3 where ID=001".
It follows that the base relation changes to t,(d)
= Staff{(001,B3),(002,B2)}. However, V(t,(d)) =
Manager{(0} and therefore w(V(d)) # V(tu(d)).
If view update u and view mapping V interfere,
then there is no transformation u — t, such that
u(V(d)) = V(tu(d)). Interference is nothing beyond
reasoning. In fact, it is well known in quantum theory
and thus the view-update problem suggests a quan-
tum interpretation.

3 User-View Entanglement

Recently quantum formalisms have been adopted to
problem descriptions outside of physics (Bruza, Law-
less, van Rijsbergen, Sofge, Coecke & Clark 2008,
Bruza et al. 2009). Examples related to databases
are models in information retrieval (IR) (Piwowarski
& Lalmas 2009b,a) or the design of part-whole re-
lationships using the Entity-Relationship (ER) no-
tation (Flender et al. 2009). One of the selling
points of quantum models is their ability to repre-
sent effects like context-dependence and emergence
(Kitto 2008). Phenomena like human-computer in-
teractions are observer-relative and therefore context-
dependent. An observation, action, or change, can be
modelled as context. For instance, the meaning of a
word like Bat depends on the context in which it is
used. It might be understood as an animal or a sports
utility dependent on its evocation (Bruza, Kitto, Nel-
son & McEvoy 2008). Similarily, emergent phenom-
ena are often conceptualized as entangled or nonsepa-
rable states. For instance, an instance of a combined
concept like Pet Fish can be modelled as an entan-
gled or nonseparable state that emerges with depen-
dence upon context (Aerts & Gabora 2005b,a). Ex-
periments have shown that users generally associate
instances like ‘guppy’ neither as a good example of the
word Pet nor of the word Fish. However, their rating

in the context of Pet Fish reveals a strong association.
Therefore, ‘guppy’ is modelled as an emergent, en-
tangled or nonseparable state of Pet Fish. Modelling
emergent and context-dependent states requires oper-
ators which do not exist in relational algebra. The two
operators relevant to the view-update problem are the
measurement function and the Tensor product. The
latter shall be introduced later in this section.

The quantum formalism defines an actualization
function which corresponds to a measurement in
quantum physics. This function is indeterminate in
the sense that the resulting state of an observed sys-
tem is determined by the outcome of the measurement
but not prior to it. An observer causes the system
to change (causation) but he will never be able to
give necessary and sufficient conditions for a change
to occur (causality). The probability involved is non-
classical since there is no underlying deterministic as-
sumption. Consequently, prior to a change or update,
there are no necessary and sufficent conditions, i.e.,
the state in which a system will be found by chance
was not determined at the time the change was made.
In contrast, classical probabilistic functions assume a
system to be in one or another state, i.e., the state of
a system, though not yet determined, is in a definite
state. Accordingly, relational operations as physically
instantiated by a DBMS always presuppose views and
base relations to be in a definite state. To make this
more precise, we need to have a look at the quantum
formalism, in particular vector spaces and operators.

A vector space is a multi-dimensional space. A
Hilbert space is an abstract or infinite-dimensional
vector space over the set of real or complex numbers.
It is equipped with inner products, i.e., rules to mea-
sure distances and angles between vectors. Vectors
have a magnitude denoting their relative size or length
in space. Consider the orthonormal basis B of a two-
dimensional Hilbert space (cf. Figure 3). For an or-

> |0)

Figure 3: The figure shows a two-dimensional Hilbert
space. It is equipped with inner products, i.e., rules to
measure distances and angles between vectors. The
orthonormal basis represents a view B which is com-
posed of two values or qubits |1) and |0). After an
update u, the view is in a state |0) where u(V (d)) #
V(tu(d) or in a state |1) where u(V(d)) = V(t,(d)).

thonormal basis B, basis vectors are both normalized
and orthogonal to each other. Two vectors® |0) and
|1) are orthogonal if their angle is 90° or their cosine
equals 0. The dot product or inner product (0|1) re-
turns a scalar. If vectors are normalized this scalar
equates the cosine and hence measures the angle or

2Note that besides (Brak-)ket notation ((| and |)) vectors can
be written in terms of linear algebra or coordinate vectors.

69

CRPIT Volume 104 - Database Technologies 2010

distance between them. Basis vectors are normalized
if their length equals 1 and so they are called unit
vectors. A vector of arbitrary length can be divided
by its length to create a unit vector. The length or
magnitude of a vector is, according to Pythagoras,
the square root of the sum of all squared vector com-
ponents.

Each vector |p) can be written as a linear combi-
nation of orthogonal vectors.

Ip) = a1|0) + az2|1), (2)

where |a;|? + |az|? = 1. The vector |p) represents a
superposition or potentiality state. To illustrate the
relationship between superposition states and actual
states (eigenstates), consider the classical example of
wave-particle complementarity.

Generally, matter and energy exhibit both wave-
like and particle-like properties but not both at the
same time, i.e., not within the same context. In dif-
ferent contexts or experimental arrangements some
matter seems more particle-like than wave-like. With
reduced values of energy (change of context) the same
matter will be more likely to show wave-like qual-
ities than particle-like properties. All the informa-
tion about a particle is encoded in its wave function,
which is analogous to the amplitude of a wave at
each point in space. This function evolves according
to a differential equation (the Schrédinger equation)
and so gives rise to interference. Interference occurs
when the interaction of two or more waves, e.g., one
wave representing observer and the other one stand-
ing for the observed system, influences their direction
of propagation characterized by crests and troughs.
When two or more waves reach the same point in
space at the same time, they either add up (the crests
arrive together which is called in-phase) or cancel each
other out (the crest from one wave meets a trough
from another wave which is called out-of-phase). The
state of a wave-like property is called superposition or
potentiality state and represented as a vector |p). Its
linear combination, the superposition or addition of
two or more states, resembles an interference pattern
typical of waves. If an observer measures the location

! In-phase i i ! Out-of-phase
' '

Figure 4: Interference occurs when the interaction of
two or more waves, e.g., one wave representing ob-
server and the other one standing for the observed
system, influences their direction of propagation char-
acterized by crests and troughs. When two or more
waves reach the same point in space at the same time,
they either add up (the crests arrive together which
is called in-phase) or cancel each other out (the crest
from one wave meets a trough from another wave
which is called out-of-phase).

of the particle encoded in |p), the wave-function will
randomly collapse to a well-defined position, a state
like |1) or |0) traditionally associated with particles.
The act of measurement, or context, of a particular
situation is modelled as a choice of basis where the
eigenstate of the system is chosen from the set of pos-
sibilities in such a way that it is compatible with the
choice of action, i.e., context, to be performed upon

70

it. Expectation values |a;|? and |ag|? are related to
the probability P(]0)) and P(]1)) of the system be-
ing eventually found in their respective eigenstates
|0) and |1). Put in another way, the likelihood of any
particular location, or eigenstate, equals the squared
amplitude |a;|? and |az|? of the wave-function in this
location.

P(0)) = |a1[* and P(]1)) = |az|* (3)

How does this actualization function translate into
the ANSI-SPARC architecture? As discussed in the
previous section, external views constitute the inter-
face to the user. Whether end-user or application
developer, at one stage he or she will update a view.
Although database operations are physically instan-
tiated causal functions, the actual change requires
causation. Causation means the user makes an ef-
fort to change a view for which he may give reasons,
e.g., a customer wants a modified view on his data,
the program code must be changed, etc. However,
such reasons will never be causally necessary and suf-
ficient. Causation is not causality. Therefore, prior
to an update u, a view V(d) is always superposed in
a state |p). After an update u the view is in a state
|0) where u(V(d)) # V(t,(d)) or in a state |1) where
w(V(d)) = V(tu(d)). Now, according to the view-
update problem, u — t, is indeterminate for arbitrary
mappings V. Put in another way, there are view-
updates u and mappings V for which it cannot be de-
termined whether a) |p) collapses to [1), i.e., there is a
transformation u — t,, such that u(V(d)) = V(t.(d)),
or b) |p) collapses to |0), i.e., there are only trans-
formations u — ¢, such that w(V(d)) # V(t,(d)).
Therefore, we need a superposition state which can-
not be reduced to |0) or |1). To explain this irre-
ducible indeterminism inherent in the view-update
problem, the user has to be modelled. A situation
in which a user cannot give causally necessary and
sufficient conditions for a view V(d) or state |p) to
be reduced to a state |1) where u(V(d)) = V(¢.(d))
or a state |0) where u(V'(d)) # V (t,(d)) refers to the
entanglement of user and view.

Entanglement requires the combined system user
plus view to be in a superposition state that is nei-
ther reducible to the user nor to the view. Prior to a
view update user and view are entangled. Moreover,
views are virtual relations derived from the concep-
tual schema, i.e., the community view. Therefore,
views, though not reducible to base relations, depend
on the conceptual schema nevertheless. Entangled
states of user and view refer to one integrated whole.
More technically, an entangled state of user plus view
cannot be written as a Tensor product of the user’s
current state and the view’s current state. The fol-
lowing paragraph formalizes this situation.

The Tensor product is an outer product of matri-
ces for which states can be easily shown to be en-
tangled. In contrast to the Cartesian product of re-
lational algebra, the Tensor product operates within
combined Hilbert spaces. Tensor products are outer
products of vectors and generate states within com-
bined systems. The dimensionality of a composite
state space is I/ where I is the number of single-
body systems, e.g., 2 for user and view, and J is
the sum of vector components, e.g., 2 for success
and failure. For instance, the tensor product of
two vectors associated with two bases B; (user) and
By (view) operates within a four-dimensional vector
space B = {|00),|01),|10),|11)}. Each vector ¢ in
this space is regarded as corresponding to a possi-
ble state of the associated pair of two-state systems.
If such a state can be factorized into states of the
single bases involved it is separable, i.e., it is a prod-
uct state. However, it is easy to find vectors which

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

cannot be expressed as a tensor product of a pair of
state vectors from the associated quantum systems.
Such vectors are entangled states. In terms of the

> |0)

Figure 5: The figure shows a combined system com-
posed of two qubit bases B; = {|0),]1)} (user) and
By = {]0),]1)} (view). Vectors v generated within
that space represent possible states of the system.
is a superposition which is either a separable or an
entangled state.

view-update problem, a product or separable state
1) refers to the combined state of user |p;) and view
p2) (or V(d)) for which the outcome of u has deter-
mined whether a) there is a transformation u — ¢,
such that w(V(d) = V(¢,(d)), or b) there are only
transformations u — t,, such that u(V(d) # V(t.(d)).
If user B; and view By disentangle, then v is sepa-
rated. A posteriori the state of u(V(d)) is either |0)
or |1) determined by the outcome of w.

[¥) = Ip1) ® |p2) (4)
= (a1]0) + az[1)) ® (b10) + b2|1))
= a1b1|00> + a2b1|10> + a1b2|01) + a2b2|11>,

where |a1b1|? + |a2b1|? + |a1be|? + |agba|? = 1.

Prior to an update u, however, user and view are
entangled. If |¢) is entangled, there is no |p;) and
|p2) such that |¥) = |p1) ® |p2). In contrast to prod-
uct states, entangled quantum states are not separa-
ble. If two or more quantum states entangle, they
interact so that a nonseparable state emerges. The
joint probability that emerges cannot be factorized
into single probabilities. In physics, the empirical set-
ting for this phenomenon involves two spatially sepa-
rated (non-local) measuring devices performing spa-
tially separated measurements. Eventually, one of the
measurements disentangles By (user) and Bs (view)
and the outcome determines the eigenstates in which
the system will be found.

[¥) = x]00) +y[11), ()

where |z]? + |y|* = 1.

In terms of the view-update problem, user B; and
view Bs interact in a way that it cannot be deter-
mined whether an update u applied to the view V(d)
translates into an update t,, applied to the base rela-
tion d such that u(V(d)) = V(t4(d)). The entangled
state [¢)) of the user-view whole cannot be reduced to
a failed state |0) € By (there is no transformation) or
a successful state |1) € By (there is a transformation).

Reconsider Equation 4 and Equation 5. Since
x > 0 it follows that a; > 0 and b; > 0. Moreover,

there is no coefficient for |10) and |01) and therefore
as = 0 or by = 0. However, y|11) implies that az > 0
and therefore it contradicts the fact that as = 0. Con-
sequently, there are no two states each belonging to
one of the bases By (user) and Bs (view) and thus ¥
is a nonseparable or entangled state.

4 Related Work

So far it has been shown that a quantum interpre-
tation of the view-update problem gives a reason-
able answer to the following questions. Why is there
no rule for determining synchronizability? In other
words, why is there no rule for determining whether
view updates translate into base relation updates for
arbitrary view mappings or not? A quantum interpre-
tation of the view-update problem explains this inde-
terminism. User and view are entangled and there-
fore, prior to a view update, it is not determined
whether this update translates into changes of a base
relation or not. Due to the irreducibility of user and
view there may be ambiguous or interfering changes of
the base relation which cannot be determined prior to
the user’s update. Put in another way, the user’s cau-
sation is irreducible to relational operators and thus
to causal functions as physically instantiated by the
DBMS. Moreover, there is no independence between
user and DBMS. The physical realization of a view
update depends on the user’s causation. The remain-
der of this section shall discuss causation and causal-
ity in relation to existing work on the view-update
problem.

First attempts to solve the view-update problem
can be traced back to the early 1980s (Bancilhon
& Spyratos 1981, Dayal & Bernstein 1982). Several
classes have been defined for which views are theo-
retically updatable, theoretically not updatable, and
partially updatable. However, given an update u, for
arbitrary V', there is no general rule that determines
synchronizability (see (Furtado & Casanova 1985) for
a survey on updating views). An update mapping
u — t,, does not always exist, and even when it does
exist, it may not be unique (Codd 1975). A change
in the view may not be reflected unambiguously by
equivalent changes in the base relation. Neverthe-
less, many attempts to synchronize external and con-
ceptual level have been made; attempts to compute
u — ty, such that w(V(d)) = V(¢t.(d)). To deductively
derive unambiguous transformations u — t,, view
updates u are usually constrained to certain views
V(d), in particular those views V' (d) that can be pro-
duced by the view projection V. Views are derived
or virtual relations and therefore restricted to their
creation using relational operators of relational alge-
bra. Stringent conditions have to be introduced in
order for a view update to translate into a base re-
lation update such that the changed view equals the
view of a changed base relation. Otherwise, undesir-
able side effects may occur effectively rendering ex-
ternal level and conceptual level inconsistent. Con-
straints can be realized by limiting updates to views
satisfying several conditions. For instance, Dayal and
Bernstein (1982) propose conditions under which a
view update translates into a base relation update
(Dayal & Bernstein 1982). Conditions were derived
in terms of base relation instances and view instances
using functional dependencies, keys, and subset con-
straints. The authors define simple syntactic transla-
tion procedures and derive checkable conditions that
characterize when the translations produced by these
procedures will satisfy the various correctness crite-
ria. Accordingly, most commercial relational DBMS
implementing the Standard Query Language (SQL)
constrain updates to particular views. For instance,

4l

CRPIT Volume 104 - Database Technologies 2010

views should be defined using simple queries involv-
ing a single base relation and the primary key or a
candidate key of that base relation. Hence, updates
are not allowed through views involving the Carte-
sian product over multiple base relations. Moreover,
views derived from complex operations like aggregate
functions and groupings are prohibited.

Other approaches have attempted to compute a
transformation v — t,, using view complements (Ban-
cilhon & Spyratos 1981). View complements repre-
sent missing data sources being complementary to
the data of a view. Such complements are used in
conjunction with a view update u in a way sufficient
to deductively derive changes t, of the base relation
d. Hence, complementary information is exploited
to translate view updates to base relation updates.
The base relation can be reconstructed from the view
and its complement. However, complements are not
unique and the choice of an optimal complement re-
quires deductive rules which haven’t been found. In
fact, it has been argued that there is no way to
compute optimal complements within relational alge-
bra if views derive from projection operators (Lecht-
enborger & Vossen 2003).

In summary, deductive attempts to solve the view-
update problem enforce constraints upon possible
view changes. In this way, a DBMS defines require-
ments, metaphorically speaking a straitjacket, for up-
dates u. In terms of the ANSI-SPARC architec-
ture, requirements are imposed bottom-up. Physi-
cally instantiated functions dictate the range of pos-
sible views. Hence, restricting the user in his possi-
bilities is not really a solution to, or explanation of,
the view-update problem. Rather it is an educational
program that enforces the user to speak the language
of relational algebra, and thus first-order logic. The
fact that, for practical purposes, such languages get
a face-lift, e.g., SQL and other declarative or pro-
cedural languages, doesn’t avoid the enforcement of
constraints upon possible view changes.

Another interesting attempt to synchronize views
and base relations uses abductive reasoning (Kakas
& Mancarella 1990). Abductive reasoning is a kind
of backward reasoning, i.e., the inverse of modus po-
nens. According to modus ponens: A — B, A+ B.
For instance, if someone is a human (A), then he is
mortal (B). Christian is a human, therefore he is mor-
tal. In contrast to this forward chaining which starts
with the antecedent condition A, abductive reasoning
starts with an observation B. It looks for possible ex-
planations of this observation. According to a given
theory, there are several explanations of someone be-
ing mortal, e.g., he is a man or she is a woman. In
terms of the view-update problem, a changed view
u(V(d)) represents the conclusion or observation B
which needs affirmation. The projection V' is meant
to be an assumed theory and the possible states d of a
base relation represent abducibles required to explain
the changed view. Abductive reasoning now gener-
ates alternative explanations, i.e., possible changes t,,
of the base relation, in order to match the changed
view u(V'(d)). This method can be useful as a heuris-
tic to find a good explanation. However, since there
are multiple views V (¢,(d)) as possible explanations,
an exact solution would either require deductive rea-
soning in order to draw or derive the conclusion or
an exhaustive inductive affirmation. Moreover, ab-
ductive reasoning is subject to the fallacy that an
observation B is solely based on the order of events
for which A is causally necessary and sufficient (Post
hoc ergo propter hoc).

In summary, causation can neither be reduced to
abductive reasoning nor deductive rules. In fact, user-
view entanglement inseparably links user and DBMS
and, unlike physically instantiated causal functions,

72

there are no necessary and sufficient conditions for a
view update to occur. According to the quantum in-
terpretation presented in this article, failed attempts
to deductively or abductively derive base relation up-
dates from view updates have a reasonable explana-
tion. Practically, there is not one solution to the
view-update problem as traditionally conceived. It
rather dissolutes if one accepts that external views
are literally perspectives inseparably bound to their
users.

5 Conclusion and Outlook

A quantum explanation of the indeterminate transfor-
mation u — t,, draws from the user’s causation. The
user cannot give necessary and sufficient conditions
for a view update to occur. Accordingly, causation
cannot be reduced to relational operators physically
implemented as causal functions. User-view states are
represented as entangled states ¢ which require cau-
sation to become actual and thus determinate. Such
nonseparable states i cannot be reduced to an up-
dated view state |1) € By for which there is a trans-
formation v — ¢, such that w(V(d)) = V(t,(d)) or a
state |0) € By for which there are only transforma-
tions u — t, such that u(V(d)) # V(t.(d)). There-
fore, there is a natural and reasonable explanation for
the indeterminacy of v — ¢, and thus for the view-
update problem.

What conclusions can be drawn with regard to
the ANSI-SPARC architecture and information sys-
tems in general? Generally, it must be acknowledged
that persistent storage of data is the backbone of
most application programs. Accordingly, user in-
terfaces comply with the general idea of abstract-
ing from the underlying physical data organisation
as the ANSI-SPARC architecture illustrates for rela-
tional databases. However, and this is the main up-
shot of this article, one can argue that external views
gain a new quality due to their inseparability from
the user. The user-view whole, an indeterminate, ir-
reducible and integrated set of states, poses exciting
questions about the nature of such states. Causation,
i.e., the user’s effort to actively change his view and
thereby the view as provided by the information sys-
tem, transcends a clear distinction between user and
view. The source of data for modelling user and view
as an integrated and undifferentiated realm becomes
less an analytical task of separation or decomposi-
tion. Rather it turns into a challenge of describing the
synthesizing ways, or modes, such views change as a
function of causation. There is much to learn from the
cognitive sciences, an interdisciplinary field compris-
ing subjects like psychology, artificial intelligence and
philosophy. Here, recent theories conceptualize the
user as an embodied agent whose perspectives change
as a function of movements or motor habits. Tak-
ing the user as an embodied agent, who is integrated
with external views of different representational for-
mats, e.g., graphical, formal or textual, constitutes a
rich and promising data source. The user’s experien-
tial episodes, carefully described from the background
of his expertise in doing so, could possibly lead to a
better understanding of the user’s practical engage-
ment with information technology. A paradigmatic
example of practical reasoning is absorbed skilful cop-
ing. Here, users generally do not adopt a scientific
attitude towards a subject matter, e.g., they do not
analyse their engaged activity like they would con-
struct a logical argument. People dealing with all
sorts of artefacts usually immerse themselves in such
a way that they gain a maximal grip on the contin-
gencies in their environment. Simply presupposing a
clear separation between user and computational de-

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

vice distorts the phenomenon of what it is actually
like to deal with such a device. Although user-view
entanglement is an undifferentiated realm for analysis
this is not to say that practical reasoning is indiffer-
ent to synthesis. Several aspects of human-computer
interactions, from simple viewings of pictures to de-
liberate reflections upon screen content, are hidden,
or opaque, and therefore require special treatment.
For instance, revealing aspects like the apprehension
of a pictorial subject through perception of a picto-
rial image requires users to attend to the activity of
picture viewing. Correlative to the actual content
of a picture, picture viewing is a synthetic unity of
perceptual and imaginative aspects. During the last
century, several methods for describing the synthetic
unity of such aspects have been worked out. They
stem from the tradition of continental philosophers
like Edmund Husserl, Martin Heidegger and Maurice
Merleau-Ponty.

References

Aerts, D. & Gabora, L. (2005a), ‘A State-Context-
Property model of concepts and their combinations
I: The structure of the sets of contexts and proper-
ties’, Kybernetes 34(1&2), 167-191.

Aerts, D. & Gabora, L. (2005b), ‘A State-Context-
Property model of concepts and their combina-
tions II: A Hilbert space representation’, Kyber-
netes 34(1&2), 192-221.

ANSI-SPARC (1975), Data base management sys-
tems: Interim report., Technical report, FDT,
ACM SIGMOD bulletin. Volume 7, No. 2.

Bancilhon, F. & Spyratos, N. (1981), ‘Update se-
mantics of relational views’, ACM Transactions on
Database Systems 6(4), 557-575.

Bruza, P., Kitto, K., Nelson, D. & McEvoy, K. (2008),
Entangling words and meaning, in ‘Proceedings of
the Second Quantum Interaction Symposium’, Uni-
versity of Oxford.

Bruza, P., Lawless, W., van Rijsbergen, C., Sofge, D.,
Coecke, B. & Clark, S., eds (2008), Proceedings of
the Second Quantum Interaction Symposium, Col-
lege Publications, University of Oxford.

Bruza, P., Sofge, D., Lawless, W., van Rijsbergen,
C. & Klusch, M., eds (2009), Proceedings of the
Third Quantum Interaction Symposium, University
of Saarbriicken, Vol. 5494 of Lecture Notes in Ar-
tificial Intelligence, Springer, Saarbriicken.

CODASYL (1971), Feature analysis of data base
management systems, Technical report, ACM, New
York.

Codd, E. (1970), ‘A Relational Model of Data for
Large Shared Data Banks’, Communications of the
ACM 13(6), 377-387.

Codd, E. (1975), ‘Recent investigations in relational
database systems’, ACM Pacific pp. 15-20.

Dayal, U. & Bernstein, P. (1982), ‘On the cor-
rect translation of update operations on relational

views’, ACM Transactions on Database Systems
8(3), 381-416.

Flender, C., Kitto, K. & Bruza, P. (2009), Beyond
Ontology in Information Systems, in ‘Proceedings
of the 3rd International Symposium on Quantum
Interaction’, Springer, pp. 276-288.

Furtado, A. & Casanova, M. (1985), ‘Updating re-
lational views’, Query Processing in Database Sys-
tems pp. 127-144.

Kakas, A. & Mancarella, P. (1990), Database updates
through abduction, in ‘Proceedings of the 16th In-
ternational Conference on Very Large Databases’,
pp. 13-16.

Kitto, K. (2008), Why quantum theory?, in ‘Proceed-
ings of the Second Quantum Interaction Sympo-
sium’, University of Oxford.

Lechtenborger, J. & Vossen, G. (2003), ‘On the com-
putation of relational view complements’, ACM
Transactions on Database Systems 28(2), 175-208.

Piwowarski, B. & Lalmas, M. (2009a), A Quantum-
based Model for Interactive Information Retrieval,
in ‘Proceedings of the 2nd International Confer-

ence on Theory of Information Retrieval’, Springer,
pp- 232-240.

Piwowarski, B. & Lalmas, M. (20095), Structured In-
formation Retrieval and Quantum Theory, in ‘Pro-
ceedings of the 3rd International Symposium on
Quantum Interaction’, Springer, pp. 289-298.

73

