
Conferences in Research and Practice in
Information Technology

Volume 152

Parallel and Distributed
Computing 2014

Australian Computer Science Communications, Volume 36, Number 6

Client: Computing Research & Education Project: Identity
Job #: COR09100  Date: November 09





Parallel and Distributed
Computing 2014

Proceedings of the Twelfth Australasian Symposium on
Parallel and Distributed Computing
(AusPDC 2014), Auckland, New Zealand,
20 - 23 January 2014

Bahman Javadi and Saurabh Kumar Garg, Eds.

Volume 152 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii



Parallel and Distributed Computing 2014. Proceedings of the Twelfth Australasian Symposium on
Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand, 20 - 23 January 2014

Conferences in Research and Practice in Information Technology, Volume 152.

Copyright c©2014, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:

Bahman Javadi
School of Computing, Engineering and Mathematics
University of Western Sydney
Penrith, NSW 2751
Australia
Email: b.javadi@uws.edu.au

Saurabh Kumar Garg
IBM Research, Australia
Melbourne Research Laboratory
Victoria 3053
Australia
Email: skgarg@au1.ibm.com

Series Editors:
Vladimir Estivill-Castro, Griffith University, Queensland
Simeon J. Simoff, University of Western Sydney, NSW
Email: crpit@scem.uws.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 152.
ISSN 1445-1336.
ISBN 978-1-921770-34-0.

Document engineering, January 2014 by CRPIT
On-line proceedings, January 2014 by the University of Western Sydney
Electronic media production, January 2014 by the AUT University

The Conferences in Research and Practice in Information Technology series disseminates the results of peer-reviewed
research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv



Table of Contents

Proceedings of the Twelfth Australasian Symposium on Parallel and Dis-
tributed Computing (AusPDC 2014), Auckland, New Zealand, 20 - 23
January 2014

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Programme Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Organising Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Welcome from the Organising Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CORE - Computing Research & Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ACSW Conferences and the Australian Computer Science
Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ACSW and AusPDC 2014 Sponsors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Contributed Papers

A Load-Balanced MapReduce Algorithm for Blocking-based Entity-resolution with Multiple Keys . . . 3
Sue-Chen Hsueh, Ming-Yen Lin and Yi-Chun Chiu

Combining Pervasive Computing With Social Networking for a Student Environment . . . . . . . . . . . . . . 11
Elizabeth Papadopoulou, Sarah Gallacher, Nick K. Taylor, M. Howard Williams, Fraser R. Black-
mun, Idris S. Ibrahim, Mei Yii Lim, Ioannis Mimtsoudis, Patrick Skillen and Stuart Whyte

Developmental Directions in Parallel Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
K. A. Hawick and D. P. Playne

Simulating and Benchmarking the Shallow-Water Fluid Dynamical Equations on Multiple Graphical
Processing Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

D. P. Playne, K. A. Hawick and M.G.B. Johnson

3D FPGA versus Multiple FPGA System: Enhanced Parallelism in Smaller Area . . . . . . . . . . . . . . . . . . 37
Krishna Chaitanya Nunna, Farhad Mehdipour and Kazuaki Murakami

Effcient Parallel Algorithms for the Maximum Subarray Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Tadao Takaoka

Communication Delegation Method for Exascale Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Yugendra R. Guvvala and Yu Zhuang

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



vi



Preface

Parallel and distributed computing has played a key role in enabling execution of several scientific appli-
cations over the past years. With advances in technology, it has changed its scope from small clusters of
workstations to very large-scale datacenters, which provide Cloud computing services. This proceedings
volume presents some of the current research in this area that has contributed to the 12th Australasian
Symposium on Parallel and Distributed Computing (AusPDC 2014), held on 20-23 January 2014 in Auck-
land, New Zealand in conjunction with the Australasian Computer Science Week (ACSW 2014). In 2010,
Australasian Symposium on Grid Computing and e-Research (AusGrid) was broadened to include all as-
pects of parallel and distributed computing and hence was called the Australasian Symposium on Parallel
and Distributed Computing. Following a couple of successful events, AusPDC has become the flagship
symposium for Grid, Cloud, Cluster, and Distributed Computing research in Australia and New Zealand.

Submissions were received from Australia, New Zealand, India, France, Japan, Taiwan, UK and US.
The full version of each paper was carefully reviewed by at least two referees, and evaluated according to
its originality, correctness, readability and relevance. A total of 7 papers (6 regular papers and one short
paper) out of 14 submissions were accepted to be presented at the conference. The accepted papers cover
topics from Cloud computing, Big Data, system security, GPU computing, and parallel processing systems.
In addition to the technical papers, we are delighted to welcome an invited talk given by Professor Jemal
Abawajy from Deakin University, Australia.

We are very thankful to the Program Committee members, and external reviewers for their outstanding
and timely work, which was invaluable for taking the quality of this year’s program to such a high level.
We also wish to acknowledge the efforts of the authors who submitted their papers and without whom
this conference would have not been possible. Due to the competitive selection process, several strong
papers could not be included in the program. We sincerely hope that prospective authors will continue to
view the AusPDC symposium series as the premiere venue in the field for disseminating their work and
results. We would like to acknowledge the leadership and untiring efforts of the conference General Chairs,
A./Professor Tony Clear and Dr. Russel Pears and the guidance provided by the steering committee, in
particular Professor Rajkumar Buyya, A./Professor Jinjun Chen, and Dr. Rajiv Ranjan.

We are grateful to ACSW Organizing Committee and Professor Simeon Simoff from UWS representing
CRPIT for his assistance in the production of the proceedings. We would like to thank IBM Research,
Australia for their support and sponsor the Best Paper Award. Thanks to the School of Computing,
Engineering, and Mathematics of University of Western Sydney for web support, advertising and refereeing
for the conference.

Bahman Javadi
University of Western Sydney

Saurabh Kumar Garg
IBM Research, Australia

AusPDC 2014 Programme Chairs
January 2014

vii



Programme Committee

Chairs

Bahman Javadi, University of Western Sydney, Australia
Saurabh Kumar Garg, IBM Research, Australia

Members

Jemal Abawajy, Deakin University, Australia
Ermyas Abebe, IBM Research, Australia
David Abramson, Monash University, Australia
Anton Beloglazov, IBM Research, Australia
Peter Bertok, RMIT, Australia
Borzoo Bonakdarpour, University of Waterloo, Canada
Rajkumar Buyya, The University of Melbourne, Australia
Geffrey Fox, Indiana University, USA
Andrzej Goscinski, Deakin University, Australia
Kenneth Hawick, Massey University, New Zealand
Michael Hobbs, Deakin University, Australia
Zhiyi Huang, Otago University, New Zealand
Wayne Kelly, Queensland University of Technology, Australia
Kevin Lee, Murdoch University, Australia
Young Choon Lee, The University of Sydney, Australia
Laurent Lefevre, INRIA, University of Lyon, France
Weifa Liang, Australian National University, Australia
Farhad Mehdipour, Kyushu University, Japan
Paul Roe, Queensland University of Technology, Australia
Jun Shen, University of Wollongong, Australia
Weisheng Si, University of Western Sydney, Australia
Gaurav Singh, CSIRO Mathematical and Information Sciences, Australia
Richard Sinnott, The University of Melbourne, Australia
Kurt Vanmechelen, University of Antwerp, Belgium
Andrew Wendelborn, University of Adelaide, Australia
Yulei Wu, Chinese Academy of Sciences, China
Yang Xiang, Deakin University, Australia
Jingling Xue, University of New South Wales, Australia
Jun Yan, University of Wollongong, Australia
Yun Yang, Swinburne University of Technology, Australia
Albert Zomaya, The University of Sydney, Australia

Steering Committee

Prof. David Abramson, Monash University, Australia
Prof. Rajkumar Buyya, University of Melbourne, Australia
A./Prof. Jinjun Chen (Vice Chair), University of Technology Sydney, Australia
Dr. Paul Coddington, University of Adelaide, Australia
Prof. Andrzej Goscinski (Chair), Deakin University, Australia
Prof. Kenneth Hawick, Massey University, New Zealand
Prof. John Hine, Victoria University of Wellington, New Zealand
Dr. Rajiv Ranjan, CSIRO ICT Centre, Australia
Dr. Wayne Kelly, Queensland University of Technology, Australia
Prof. Paul Roe, Queensland University of Technology, Australia
Dr. Andrew Wendelborn, University of Adelaide, Australia
Dr. Bahman Javadi, University of Western Sydney, Australia
Dr. Saurabh Kumar Garg, IBM Research, Australia

viii



Organising Committee

Chairs

Tony Clear and Russel Pears

Venue

Tony Clear

Communications

Russel Pears, Hui Ling Tan, Melanie Curry-Irons and Ryan Butler

Finance

Alison Clear and Eva Ihaia

Sponsorship

Stephen Thorpe

Operations

Adam Winship and Eva Ihaia

Programme, proceedings and booklet

Alison Clear

Catering and registration

AUT Hospitality Services

ix



Welcome from the Organising Committee

On behalf of the Organising Committee, it is our pleasure to welcome you to Auckland and to the 2014
Australasian Computer Science Week (ACSW 2014). Auckland is New Zealand’s largest urban area with
a population of nearly one and a half million people. As the centre of commerce and industry, Auckland is
the most vibrant, bustling and multicultural city in New Zealand. With the largest Polynesian population
in the world, this cultural influence is reflected in many different aspects of city life. ACSW 2014 will be
hosted at the City Campus of Auckland University of Technology (AUT), which is situated just up from the
Town Hall and the Auckland central business district. ACSW is the premier event for Computer Science
researchers in Australasia. ACSW2014 consists of conferences covering a wide range of topics in Computer
Science and related areas, including:

– Australasian Computer Science Conference (ACSC) (Chaired by Bruce Thomas and Dave Parry)
– Australasian Computing Education Conference (ACE) (Chaired by Jacqueline Whalley and Daryl

D’Souza)
– Australasian Information Security Conference (AISC) (Chaired by Udaya Parampalli and Ian Welch)
– Australasian User Interface Conference (AUIC) (Chaired by Burkhard C. Wünsche and Stefan Marks)
– Australasian Symposium on Parallel and Distributed Computing (AusPDC) (Chaired by Bahman

Javadi and Saurabh Kumar Garg)
– Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by James

Warren)
– Asia-Pacific Conference on Conceptual Modelling (APCCM) (Chaired by Georg Grossmann and Mo-

toshi Saeki)
– Australasian Web Conference (AWC) (Chaired by Andrew Trotman)

This year reflects an increased emphasis for ACSW on community building. Complementing these
published technical volumes therefore, ACSW also hosts two doctoral consortia and a number of associated
workshops, including those for the Heads and Professors of Computer Science, plus for the first time the
‘Australasian Women in Computing Celebration’. Naturally in additional to the technical program, there
are a range of events, which aim to provide the opportunity for interactions among our participants. A
welcome reception will be held in the atrium of the award winning newly built Sir Paul Reeves Building,
which has integrated the city campus as a hub for student activity and provides a wonderful showcase for
this year’s ACSW. The conference banquet will be held on campus in one of the reception rooms in this
impressive complex.

Organising a multi-conference event such as ACSW is a challenging process even with many hands help-
ing to distribute the workload, and actively cooperating to bring the events to fruition. This year has been
no exception. We would like to share with you our gratitude towards all members of the organising com-
mittee for their combined efforts and dedication to the success of ACSW2014. We also thank all conference
co-chairs and reviewers, for putting together the conference programs which are the heart of ACSW, and to
the organisers of the symposia, workshops, poster sessions and accompanying conferences. Special thanks
to Alex Potanin, as the steering committee chair who shared valuable experiences in organising ACSW
and to John Grundy as chair of CoRE for his support for the innovations we have introduced this year.
We’d also like to thank Hospitality Services from AUT, for their dedication and their efforts in conference
registration, venue, catering and event organisation. This year we have secured generous support from
several sponsors to help defray the costs of the event and we thank them for their welcome contributions.
Last, but not least, we would like to thank all speakers, participants and attendees, and we look forward
to several days of stimulating presentations, debates, friendly interactions and thoughtful discussions.

We hope your stay here will be both rewarding and memorable, and encourage you to take the time
while in New Zealand to see some more of our beautiful country.

Tony Clear
Russel Pears
School of Computer & Mathematical Sciences

ACSW2014 General Co-Chairs
January, 2014



CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2014 in Auckland. CORE, the peak body representing academic
computer science in Australia and New Zealand, is responsible for the annual ACSW series of meetings,
which are a unique opportunity for our community to network and to discuss research and topics of
mutual interest. The component conferences of ACSW have changed over time with additions and sub-
tractions ACSC, ACE, AISC, AUIC, AusPDC, HIKM, ACDC, APCCM, CATS and AWC have now been
joined by the Australasian women in computing celebration (AWIC), two doctoral consortia (ACDC and
ACE-DC)and an Australasian Early Career Researchers Workshop (AECRW) which reflect the evolving
dimensions of ACSW and build on the diversity of the Australasian computing community.

In 2014, we have again chosen to feature a small number of keynote speakers from across the discipline:
Anthony Robins (ACE), John Mylopolous (APCCM), and Peter Gutmann (AISC). I thank them for their
contributions to ACSW2014. The efforts of the conference chairs and their program committees have led
to strong programs in all the conferences, thanks very much for all your efforts. Thanks are particularly
due to Tony Clear, Russel Pears and their colleagues for organising what promises to be a vibrant event.
Below I outline some of COREs activities in 2012/13.

I welcome feedback on these including other activities you think CORE should be active in.

The major sponsor of Australian Computer Science Week:
– The venue for the annual Heads and Professors meeting
– An opportunity for Australian & NZ computing staff and postgrads to network and help develop their

research and teaching
– Substantial discounts for attendees from member departments
– A doctoral consortium at which postgrads can seek external expertise for their research
– An Early Career Research forum to provide ECRs input into their development

Sponsor of several research, teaching and service awards:
– Chris Wallace award for Distinguished Research Contribution
– CORE Teaching Award
– Australasian Distinguished Doctoral Dissertation
– John Hughes Distinguished Service Award
– Various Best Student Paper awards at ACSW

Development, maintenance, and publication of the CORE conference and journal rankings. In 2013 this
includes a new portal with a range of holistic venue information and a community update of the CORE
2009 conference rankings.

Input into a number of community resources and issues of interest:
– Development of an agreed national curriculum defining Computer Science, Software Engineering, and

Information Technology
– A central point for discussion of community issues such as research standards
– Various submissions on behalf of Computer Science Departments and Academics to relevant government

and industry bodies, including recently on Australian Workplace ICT Skills development, the Schools
Technology Curriculum and the Mathematics decadal plan

Coordination with other sector groups:
– Work with the ACS on curriculum and accreditation
– Work with groups such as ACDICT and government on issues such as CS staff performance metrics

and appraisal, and recruitment of ?students into computing
– A member of CRA (Computing Research Association) and Informatics Europe. These organisations

are the North American and European equivalents of CORE.
– A member of Science & Technology Australia, which provides eligibility for Science Meets Parliament

and opportunity for input into government policy, and involvement with Science Meets Policymakers

A new Executive Committee from 2013 has been looking at a range of activities that CORE can lead
or contribute to, including more developmental activities for CORE members. This has also included a
revamp of the mailing lists, creation of discussion forums, identification of key issues for commentary and
lobbying, and working with other groups to attract high aptitude students into ICT courses and careers.
Again, I welcome your active input into the direction of CORE in order to give our community improved
visibility and impact.



CORE’s existence is due to the support of the member departments in Australia and New Zealand,
and I thank them for their ongoing contributions, in commitment and in financial support. Finally, I am
grateful to all those who gave their time to CORE in 2013, and look forward to the continuing shaping
and development of CORE in 2014.

John Grundy

President, CORE
January, 2014

xii



ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0 ). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2015. Volume 37. Host and Venue - University of Western Sydney, NSW.

2014. Volume 36. Host and Venue - AUT University, Auckland, New Zealand.

2013. Volume 35. Host and Venue - University of South Australia, Adelaide, SA.
2012. Volume 34. Host and Venue - RMIT University, Melbourne, VIC.
2011. Volume 33. Host and Venue - Curtin University of Technology, Perth, WA.
2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.
2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.
2008. Volume 30. Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.



Conference Acronyms

ACDC Australasian Computing Doctoral Consortium
ACE Australasian Computing Education Conference
ACSC Australasian Computer Science Conference
ACSW Australasian Computer Science Week
ADC Australasian Database Conference
AISC Australasian Information Security Conference
APCCM Asia-Pacific Conference on Conceptual Modelling
AUIC Australasian User Interface Conference
AusPDC Australasian Symposium on Parallel and Distributed Computing (replaces AusGrid)
AWC Australasian Web Conference
CATS Computing: Australasian Theory Symposium
HIKM Australasian Workshop on Health Informatics and Knowledge Management

Note that various name changes have occurred, which have been indicated in the Conference Acronyms sections

in respective CRPIT volumes.

xiv



ACSW and AusPDC 2014 Sponsors

We wish to thank the following sponsors for their contribution towards this conference.

Host Sponsor

Auckland University of Technology,
www.aut.ac.nz

Platinum Sponsor

DATACOM,
www.datacom.com.au

Gold Sponsor

T
he

 U
ni

ve
rs

it
y 

of
 A

uc
kl

an
d

N
ew

 Z
ea

la
nd

Profile
the university of aucklanD

T
he

 U
ni

ve
rs

it
y 

of
 A

uc
kl

an
d

P
ro

fil
e

20
07

-8

The University of Auckland,
www.auckland.ac.nz

Silver Sponsors

COLAB - AUT Design+Creative Technologies,
colab.aut.ac.nz

Institute of IT Professionals, New Zealand,
www.iitp.org.nz

Client: Computing Research & Education Project: Identity
Job #: COR09100  Date: November 09

CORE - Computing Research and Education,
www.core.edu.au

Bronze Sponsor

SERL - AUT Software Engineering Research
Laboratory,

www.serl.aut.ac.nz

Australian Computer Society,
www.acs.org.au

Publication Sponsor

University of Western Sydney,
www.uws.edu.au

Sponsors of AusPDC

IBM Research – Australia,
www.research.ibm.com/labs/australia/index.shtml

xv





Contributed Papers

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

1



CRPIT Volume 152 - Parallel and Distributed Computing 2014

2



A Load-Balanced MapReduce Algorithm for Blocking-based 
Entity-resolution with Multiple Keys 

Sue-Chen Hsueh1, Ming-Yen Lin2*, and Yi-Chun Chiu2 
1Dept. of Information Management, Chaoyang University of Technology, Taichung, Taiwan 

2Dept. of Information Engineering and Computer Science, Feng Chia University, Taichung, Taiwan 

schsueh@cyut.edu.tw; linmy@mail.fcu.edu.tw; ojean913@gmail.com  

 

Abstract 
Entity resolution (ER), which detects records referring to 
the same entity across data sources, is a long-lasting 
challenge in database management research. The sheer 
volume of data collections today calls for the need of a 
blocking-based ER algorithm using the MapReduce 
framework for cloud computing. Most studies on 
blocking-based ER assume that only one blocking key is 
associated with an entity. An entity in reality may have 
multiple blocking keys in some applications. When the 
entities have a number of blocking keys, ER can be more 
efficient since two entities can form a similar pair only if 
they share several common keys. Therefore, we propose a 
MapReduce algorithm to solve the ER problem for a huge 
collection of entities with multiple keys. The algorithm is 
characterized in the combination-based blocking and the 
load-balanced matching. The combination-based blocking 
utilizes the multiple keys to sort out necessary entity pairs 
for future matching. The load-balanced matching evenly 
distributes the required similarity computations to all the 
reducers in the matching step so as to remove the 
bottleneck of skewed matching computations for a single 
node in a MapReduce framework. Our experiments using 
the well-known CiteSeerX digital library show that the 
proposed algorithm is both efficient and scalable. . 

Keywords:  Entity resolution, cloud computing, 
MapReduce, load-balance. 

1 Introduction 
Entity resolution (abbreviated as ER), also known as data 
matching, de-duplication, identity resolution, or record 
linkage, is to identify all the manifestations referring to the 
same entity (Hernández and Stolfo 1995; Brizan and 
Tansel 2006; Chaudhuri, Ganti, and Kaushik 2006; 
Elsayed et al. 2008; Vernica et al. 2010; Zhang et al. 2010). 
ER is crucial for data integration and has been applied in 
many applications including price comparisons, citation 
matching (Pasula et al. 2012), etc. Take a 
price-comparison website for example, to provide all the 
prices of a product crawled from different web-pages, the 
website needs to identify whether the two product-pages 
from two product websites referring to the same product. 
Given n1 product-pages in website P and n2 product-pages 
in website Q, n1*n2 similarity computations are required to 

                                                           
Copyright (c) 2014, Australian Computer Society, Inc. This 
paper appeared at the 12th Australasian Symposium on Parallel 
and Distributed Computing (AusPDC 2014), Auckland, New 
Zealand, January 2014. Conferences in Research and Practice in 
Information Technology (CRPIT), Vol. 152. B. Javadi and S. K. 
Garg, Eds. Reproduction for academic, not-for profit purposes 
permitted provided this text is included. 

identify the pages for the same products by entity 
resolution. The total number of similarity computations 
can be massive, considering the scale of web-pages 
nowadays. 

In general, a blocking-based ER is used to accelerate 
the similarity computations. Each entity in the 
blocking-based ER has an attribute or a specific value 
computed by hashing or other means called blocking key. 
The blocking-based ER comprises a blocking step and a 
matching step. The blocking step partitions all the entities 
in the dataset by blocking keys into several groups called 
blocks, where the entities in a block have the same 
blocking key. After that, the matching step performs 
similarity computations for all the entity pairs in each 
block and determines the similarities between entities 
within each block. The result is a set of all the entity pairs 
of high similarity. The blocking key in fact reduces the 
total number of similarity computations required in the 
blocking-based ER. 

Most of the studies on blocking-based ER assume that 
there is only one blocking key associated with an entity. In 
reality, an entity may have several blocking keys. An 
entity can be a record in a database, a web-page in a 
web-site, an article in a research repository, etc. A product 
page may be classified to multiple categories so as to have 
several attribute keys; an article in DBLP or CiteSeerX 
generally contains many keywords or index terms. In 
addition, the titles and some attributes like authors of the 
articles can serve as blocking keys, too. When the entities 
have a number of blocking keys, blocking-based ER can 
be performed more efficient since two entities can be a 
similar pair only if they share several common keys. 

Nevertheless, the blocking step of ER will become 
more time-consuming if multiple blocking keys are treated 
as many individual blocking keys, which consideration is 
adopted in most ER algorithms today. Traditional solution 
generates a pair for further matching if two entities share a 
common blocking key. Because there are more than one 
key associated with an entity now, the possibility of 
sharing common keys with other entities, which also 
contain many keys, is greatly increased. Consequently, the 
number of entity pairs generated for matching will be 
greatly increased. We consider that blocking keys 
represent specific features of entities, multiple blocking 
keys can be used in the blocking step to sort out the entities 
need to be matched so that the matching step can be 
accelerated. 

A typical ER problem is the pairwise document 
similarity (Baraglia et al. 2010; Lin 2009; Elsayed et al. 
2008), which detects similar documents in a collection like 
DBLP, CiteSeerX, or Google Scholar. The collection of 
articles is continuously growing as research articles keep 

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

3



appending in a surprising speed. The ER process 
performed by a single machine suffers from the vast 
amount of the increasing data. The total number of 
similarity computations for the potential pairs becomes 
very huge. For example, 1.4 million publication records in 
the CiteSeerX collection will require 979 billion similarity 
computations. The problem is exacerbated if the data size 
accumulates up to terabytes or petabytes. Thus, it is 
necessary to devise a blocking-based ER algorithm using 
the MapReduce framework (Dean and Ghemawat 2004) in 
an open architecture like Hadoop (Hadoop 2012). 

Although the blocking-based ER using the MapReduce 
framework may solve the problem of huge dataset size, the 
process may still suffer from the imbalance of key 
distributions. Commonly, the map phase and the reduce 
phase are the two core processes of a MapReduce program. 
An input record is a form of (key, value) pair and the key 
may come from a different domain. The process 
responsible for the map function is referred to a mapper 
and that for the reduce function is referred to a reducer for 
convenience. A mapper reads one block of (key, value) 
pairs, and produces a list of intermediate (key’, value’) 
pairs after processing. Each (key’, value’) pair having the 
same key’ will be sent to the same reducer. A reducer 
accepts the intermediate key’ with corresponding list of 
value’s, processes and generates the output. A default hash 
partitioning is used in the MapReduce framework to 
partition the intermediate (key’, value’) pairs to the 
reducers. Each reducer might be responsible for its 
respective 100 (key’, value’) pairs when there are 10000 
keys and 100 reducers. If certain keys are more popular 
than the others, a large number of (key’, value’) pairs will 
be sent to some reducer so that the ER task cannot finish 
until this reducer accomplishes matching. In fact, the 
bottleneck of the ER process is on the reducer having the 
largest number of assigned (key’, value’) pairs. To our 
knowledge, few studies have taken account of the 
load-balance problem among reducers, especially for the 
ER problem. The efficiency of the whole ER process can 
be remarkably improved when the working loads of the 
reducers in the matching step are balanced. 

Therefore, in this paper, we propose a MapReduce 
algorithm to solve the ER problem for a huge collection of 
entities with multiple keys. The algorithm features in the 
combination-based blocking and the load-balanced 
matching. The combination-based blocking utilizes the 
multiple keys to filter out unnecessary entity pairs. The 
load-balanced matching evenly distributes the required 
similarity computations to all the reducers in the matching 
step. Our experiments using CiteSeerX show that the 
proposed algorithm is efficient and scales up linearly with 
respect to the dataset size. 

The rest of the paper is organized as follows. Section 2 
defines our problem. Related works are briefly reviewed in 
Section 3. Section 4 presents the proposed algorithm. The 
experimental results are given in Section 5. Section 6 
concludes this study. 

2 Problem Definition 
A dataset D = {E1, E2, …, Em} contains m entities, where 
an entity Ei (1 ≤ i ≤ m) has |Ei| blocking keys. The blocking 
keys of Ei is represented by BE

i
 = {k1, k2, …, k|E

i
|} and |Ei| > 

1. Let the minimum number of blocking keys of the 
entities in D be kc, kc > 1. Given a similarity measure and a 
similarity threshold θ, the ER problem is to find out all the 
similar entity pairs in D. An entity pair (Ei, Ej) is 
considered similar if sim(Ei, Ej) ≥ θ, where sim(Ei, Ej) is 
the similarity value between Ei and Ej computed using the 
similarity measure. Particularly, the characteristics of 
blocking keys implies, in our problem, that sim(Ei, Ej) < θ 
if |BE

i
 ∩ BE

j
| < kc. That is, Ei and Ej cannot be similar if the 

number of common blocking keys between them is less 
than kc. Accordingly, the similarity computation sim(Ei, Ej) 
can be eliminated in the ER process if |BE

i
 ∩ BE

j
| < kc. 

A typical similarity measure between Ei and Ej is the 
Jaccard similarity coefficient, which is defined as the size 
of their intersection divided by the size of their union. 
Assume the entities are text research articles, the Jaccard 
similarity coefficient can be calculated by the number of 
common terms divided by the total number of terms in the 
two articles. The blocking keys of the entities can be title 
words or keywords of the articles. 

For example, given D = {E1, E2, …, E100} and kc = 2. 
We have 100 entities and the minimum number of 
blocking keys of the entities in D is 2. Assume E1 has 4 
blocking keys BE

1
 = {a, c, d, e}, E2 has 3 blocking keys BE

2
 

= {a, c, e}, and E3 has 2 blocking keys BE
3
 = {d, e}, etc. 

Then |E1| = 4, |E2| = 3, and |E3| = 2; BE
1
 ∩ BE

2
 = {a, c, e}, 

BE
1
 ∩ BE

3
 = {d, e}, and BE

2
 ∩ BE

3
 = {e}. The similarity 

computations need to be performed on both (E1, E2) and 
(E1, E3) but not (E2, E3) since |BE

2
 ∩ BE

3
| = 1 < kc. If the 

similarity threshold θ = 0.8, sim(E1, E2) = 0.85, and sim(E1, 
E3) = 0.7, entity pair (E1, E2) is a similar pair and is 
inserted into the answer set. 

Note that the ER problem definition is the same as 
others. Nevertheless, our problem emphasizes on the 
variable number of blocking keys in entities. Only entities 
having certain number of common keys are potentially 
similar. 

3 Related Works 
Although the ER problem is a long-existing problem, most 
solutions are not designed for extremely large collection of 
entities. Some algorithms have been presented for 
document-similarity computations (Baraglia et al. 2010) 
and blocking-based ER solution under the MapReduce 
framework (Kiefer et al. 2010; Kim and Shim 2012; Lu et 
al. 2012; Metwally and Faloutsos 2012; Vernica et al. 
2010; Zhang et al. 2010). These works assume that there is 
only one key for an entity and use a map/reduce phase to 
handle the problem. These works design a map function 
for the blocking step and then a reduce function for the 
matching step. Some of the notable works includes sorted 
neighborhood (Kolb et al. 2011a) and load-balanced ER 
(Kolb et al. 2012a; Kolb et al. 2012b).  

Sorted neighborhood is a blocking technique by sorting 
all entities according to blocking keys, assigning a window 
size w and comparing entities in the window while sliding. 
Some entities with similar but not same blocking keys 
might be compared for similarity evaluations. In (Kolb et 
al. 2011a; Kolb et al. 2011b), the sorted neighborhood is 
implemented under the MapReduce framework while 

CRPIT Volume 152 - Parallel and Distributed Computing 2014

4



entities crossing boundaries have to be duplicated to avoid 
missing potential pairs due to reducers’ limitations (Kolb 
et al. 2011a). Both JobSN using two MapReduce phases 
and RepSN using one MapReduce phase are presented. 
However, the problem of imbalanced loads among 
reducers in MapReduce is not mentioned. 

BlockSplit and PairRange (Kolb et al. 2012b) consider 
the load-balancing problem using the MapReduce 
framework for single key ER. A block distribution matrix 
needs to be distributed using the distributedCache 
technique in MapReduce so that the entities can be evenly 
distributed to all the reducers. PairRange outperforms 
BlockSplit because PairRange guarantees that all reducers 
may receive the same number of entities (Kolb et al. 
2012b). 

The study in (Kolb et al. 2011a) indicates that multiple 
keys may exist in an entity. However, the multiple keys are 
treated as independent like several single keys so that 
duplicate distributions appear in the blocking step. The 
MultiRepSN (Kolb et al. 2011a) is proposed to overcome 
an entity with multiple blocking keys. Although 
reducer-loads are balanced, the algorithm might suffer 
from the problem of largely duplicated entity pairs.  

Thus, the study (Kolb et al. 2013) presents an algorithm for 
ER with redundancy-free matching. The idea is to 
enumerate all candidate sets of entities with the index of 
the smallest common candidate sets. The mapper will emit 
(blocking keys, entity values) for the reducers. The entity 
value includes the entity and the smallest common 
blocking keys. Thus, Redundancy-Free Matching (Kolb et 
al. 2013; Kolb and Rahm 2013) may decrease the number 
of duplicate entity pairs. However, when a reducer 
receives an overwhelming entities, the execution time can 
be long. Therefore, the issue of load-balancing among 
reducers must be considered for an ER solution under the 
MapReduce framework with multiple keys. 

4 The Proposed Algorithm 

4.1 Overview of the Algorithm 
The proposed algorithm for blocking-based ER utilizes the 
multiple blocking keys in each entity for an improved 
entity distribution in the blocking step. The distribution is 
more precise because an entity pair may exist in a block 
only when the number of common blocking keys between 
the pair exceeds certain threshold (i.e. kc). Because an 
entity may have more than kc keys, it needs to generate all 
the combinations of kc keys for potential key comparisons. 
The entity distribution procedure is called 
combination-based blocking in the proposed algorithm.  

After the blocking step, we aim to balance the working 
load among all the reducers for similarity computations in 
the matching step. The idea is to obtain a statistics of the 
total number of computations required for all the blocks 
first. We then evenly partition the computations among all 
the reducers to avoid potential overload of a reducer due to 
skewed key distributions. The procedure is called 
load-balanced matching in the proposed algorithm. Both 
combination-based blocking and load-balanced matching 
are designed using the MapReduce framework. Therefore, 
the algorithm comprises two map/reduce phases: a 
map/reduce phase for combination-based blocking, 

followed by a map/reduce phase for load-balanced 
matching. An overview of the proposed algorithm is 
shown in Fig. 1. 

 

D
Combination-based

Blocking
Load-balanced

Matching
Matching

result

Map/reduce phase Map/reduce phase

Generate potential key
combinations and distribute 
entity lists having common 
keys

Generate entity pairs
combinations and evenly 
distribute similarity 
computations  

 

Fig. 1: An Overview of the Proposed Algorithm 

 

Map(key = Ei, value = BEi)

Input: P = a partition of entities in D; kc = minimum number of common keys

1. foreach Ei ∈ P do

2.    foreach Kb = (a1, a2, …, akc), where ap, aq ∈ BEi ∧ ap ≠ aq ∀ 1 ≤ p, q ≤ kc

3. output <Kb, i> /* Kb is a kc-combination from BEi, i is the id of entity Ei */

4. end

5. end

Reduce(key = Kb, value = list of entity ids)

1. foreach key Kb do  /* initial entity_list = ∅ */

2. foreach entity id v in the list of values do

3. add v to  entity_list

4. end

5. if entity_list.count ≥ 2

6. output < Kb, entity_list>

7.       endif

8. end  

 

Fig. 2: Functions for Combination-based Blocking 

 

a, c, e2

a, c, d1

a, c, e4

a, b3

b, f6

b, e5

a, c, f8

b, c, f7

b, e9

BEi
Ei

Map3
Reduce2

Reduce1

D

(2, 4)a, e

(1, 2, 4, 8)a, c

(2, 4)c, e

(7, 8)c, f

Ei-listKey

(5, 9)b, e

(6, 7)b, f

Ei-listKey

Output

Map2

Map1

6b, f

5b,e

4c,e

4a,e

4a,c

ValueKey

9b, e

8c, f

8a, f

8a, c

7c, f

7b, f

7b, c

ValueKey

3a, b

2c, e

2a, e

2a, c

1c, d

1a, d

1a, c

ValueKey

 
 
Fig. 3: An Example for Combination-based 

Blocking 

4.2 Combination-based Blocking 
Figure 2 shows the map/reduce functions in the proposed 
combination-based blocking procedure. A mapper 
receives its partition of entities in the dataset. Each input 
data is an entity and the associated blocking keys. The map 
function generates all the kc-combinations from the set of 

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

5



blocking keys. Each combination is outputted with the id 
of the entity. For example, <(a,c), 2>, <(a,e), 2>, and 
<(c,e), 2> are outputted for entity E2 with BE

2
 = {a, c, e} 

when kc = 2; <(a, c, e), 2> is outputted for E2 and <(a, c, d), 
1>, <(a, c, e), 1>, <(a, d, e), 1>, and <(c, d, e), 1> are 
outputted for E1 with BE

1
 = {a, c, d, e} when kc = 3. In fact, 

E1 and E2 need to be compared since they have three 
common blocking keys when kc = 3. Thus, all the 
kc-combinations from BE

i
 for entity Ei need to be 

generated.  
The reduce function of the procedure further 

determines those entities having at least kc common keys 
to form a potential list for the matching step. The reducer 
would receive a kc-combination as the key and the list of 
entity ids having that combination. If the list contains only 
one entity for a certain key combination, the entity is 
eliminated from the matching step obviously. Therefore, 
we count the number of entities in the entity_list 
(entity_list.count) while adding entities of the same Kb to 
the associated entity_list. Only entity_list having two or 
more entities will be sent to the load-balanced matching.  

An example showing the map/reduce functions with 
nine entities, three mappers, two reducers, and kc = 2 is 
displayed in Fig 3. Mapper1 generates <(a,c), 1>, <(a, d), 
1>,  <(c, d), 1>, and so on; Mapper2 generates <(a, c), 4>, 
<(a,e), 4> and so forth. A simple hash partitioning is 
adopted for the reducers.  Assume Reducer1 accepts keys 
(a, c), (a, e), and so on. Hence, entity_list (1, 2, 4, 8) of the 
same key (a, c) will be sent to the next procedure, 
load-balanced matching. 

4.3 Load-balanced Matching 
The matching step has to compute similarities for the pairs 
of all the 2-combnations of each entity list generated by the 
blocking step. A common implementation of the matching 
procedure uses the default hash partitioning to pass the 
intermediate keys to reducers. Consequently, the reducer 
receiving long entity-lists suffer from the vast amount of 
similarity computations. A skewed key distribution also 
leads to imbalanced workloads for reducers. Hence, the 
matching step cannot finish until the reducer of the 
heaviest workload completes. Take the entity_lists in Fig. 
3 for example, reducer1 produces 7 entity pairs (including 
(1,2), (1, 4), (1, 8), (2, 4), (2, 8), (4, 8), and (7,8)) but 
reducer2 produces only 2 pairs for similarity computations. 
The blocking-based ER can be completed earlier without 
unnecessary waiting if the workloads are balanced among 
reducers in the matching step. 

Figure 4 shows the map/reduce functions in the 
proposed load-balanced matching procedure. Note that the 
partition function, which replaces the default hash 
partitioning, is particularly designed to evenly distribute 
the total number of comparisons to the total number of 
reducers (i.e. numReduceTasks). In order to average the 
workloads, we use a partition number partno to count and 
mark each input record (entity pair). The total number of 
entity pairs for matching is then obtained by the partno. 
Note that we prune the duplicate pair (2, 4) from keys (a, e), 
and (c, e) here. The mapper generates (partno, entity pair) 
as the (key, value) for the reducers but applying the 
designated partitioning for load balancing. Entity pairs are 
sent to all the receivers by round robin, as shown in the 

partition function in Fig. 4. The reducers then outputs the 
similar pairs if their similarity value is no less than the 
similarity threshold. 

Figure 5 shows an example of load-balanced matching 
with two mappers and two reducers. The matching 
receives entity lists in Fig. 3.  
A mapper generates the <partno, entity pair> by 
enumerating all the 2-combinations of an entity list with 
associated partno, which value is increased by 1 for each 
combination. The entity list (1, 2, 4, 8) will produce (1, 2), 
(1, 4), (1, 8), (2, 4), (2, 8), and (4, 8) entity pairs. Thus, <1, 
(1, 2)>, <2, (1, 4)>, <3, (1, 8)>, <4, (2, 4)>, <5, (2, 8)>, and 
<6, (4, 8)> are generated by mapper1; <7, (7, 8)>, <8, (5, 
9)>, and <9, (6, 7)> are generated by mapper2. The 
partitioning determines which reducer to receive the 
<partno, entity pair> using the designed partition function. 
Because the total number of reducers is two, <partno, 
entity pair> having odd partno is processed by reducer1, 
and that having even partno is processed by reducer2. 
Assume that the similarity value of sim(E1, E8), sim(E2,E8), 
sim(E6, E7), and sim(E4, E8) is less than the similarity 
threshold. The matched result contains similar pairs (1, 2), 
(7, 8), (1, 4), (2, 4), and (5, 9). If we configure the 
MapReduce job with 3 reducers, the 9 computations will 
be evenly distributed to the 3 reducers. 
 

Map(key = Kb , value = entity list Ei_list)
1. foreach entity_list Ei_list do /* generate all 2-combination entity pairs from Ei_list */ 

2.    generate all 2-combination entity pairs EPS = { (Ep, Eq) | Ep, Eq ∈ Ei_list ∧ Ep ≠ Eq }

3.    foreach entity pair (Ep, Eq) in EPS do /*initial partno = 1*/

4.        partno++; 

5.        output <partno, (Ep, Eq) >

6.    end

7. end

Partition(key = partno, value = entity pair (Ep, Eq) )
/* numReduceTasks is the number of reducers, defined by MapReduce configuration */

return (partno.hashCode() & Integer.MAX_VALUE) % numReduceTasks;

Reduce(key = partno, value = entity pair (Ep, Eq) )

1. foreach key partno do  

2.     foreach value v in v’s value list do

4.         output  entity pair (Ep, Eq) if sim(Ep, Eq) ≥ θ
5.      end

6. end  

 

Fig. 4: Functions for Load-balanced Matching 

 

Reduce2

Reduce1

D

Map2

Map1
(2, 8)5

(4, 8)6

(2, 4)4

(1, 8)3

(1, 4)2

(1, 2)1

entity pairpartno

(6,7)b, f

(5, 9)b, e

(7, 8)c, f

(2, 4)c, e

(2, 4)a, e

(1, 2, 4, 8)a, c

(6, 7)9

(5, 9)8

(7,8)7

entity pairpartno

P
ar

tit
io

ni
ng

(7, 8)7

(6, 7)9

(2, 8)5

(1, 8)3

(1, 2)1

entity pairpartno

(1, 4)2

(2, 4)4

(5, 9)8

(4, 8)6

entity pairpartno

Output

(1, 2)
(7, 8)

(1, 4)
(2, 4)
(5, 9)

Note: 
sim(E1, E8) < θ
sim(E2, E8) < θ
sim(E6, E7) < θ
sim(E4, E8) < θ

 
 

Fig. 5: An Example for Load-balanced Matching 

CRPIT Volume 152 - Parallel and Distributed Computing 2014

6



5 Experimental Results 
Extensive experiments were conducted to assess the 
performance of the proposed algorithm. Our experiments 
were performed in a 30-nodes cluster which contains three 
types of nodes, as shown in Table 1. All nodes run in 
Ubuntu 10.10, Hadoop 0.20.205.0, and Java 1.6.0.   

Real dataset CiteSeerX (CiteSeerX 2012) was used in the 
experiments. CiteSeerX contains about 1.4 million 
publication records of total size 1.8 GB. Each publication 
record includes a record id, title, keywords, abstract, and 
URL information. The record id and its title were extracted 
and used as input because some records have no keywords. 
The stop-words in titles were removed and then the rest of 
the title words were used as keywords, which serve as the 
blocking keys. A record has 4.9 keys in average; the 
maximum number of keys is 20. Very few records contain 
only one key and they were skipped for the ER process 
since the minimum number of common keys kc is greater 
than one in our problem definition. 

 
Config. 9 nodes 9 nodes 12 nodes 

Intel Core i5 Intel Core i5 Intel E7600 
CPU 

3.24 GHz * 4 3.24 GHz * 2 3.06 GHz * 2 
Memory 3.4 GB 

Hard disk SATA 500G 

 

Table 1: Experimental Environments 

Same as the experiments in most studies on ER with 
MapReduce (Kolb et al. 2011a; Kolb et al. 2012a; Kolb 
and Rahm 2013), the execution time of comparing entities 
is not included in the result. That is, in the following 
context, the execution time accounts for the total time 
needed to find out the set of all the potentially similar 
entity pairs. In practice, after discovering these pairs, the 
complete ER process has to perform similarity 
computations like computing Jaccard coefficients for all 
these pairs. Clearly, a smaller number of the pairs results to 
a faster matching result. When the minimum number of 
common blocking keys (kc) is larger, the number of 
resulting pairs will be smaller. Nonetheless, a larger kc 
often indicates that the total number of combinations can 
be larger.  

Table 2 shows that 94.3k combinations are generated 
and 53.8k resulting pairs need to be matched for kc = 2. 
There are 216.2k combinations are generated and only 
36.5k resulting pairs need to be matched when kc is 
increased to 3. When kc is increased to 4, the number of 
combinations is the largest of 411.9k but only 19.5k pairs 
need further matching. When kc is increased to 5, the 
number of pairs required matching decreased to 8.4k. 

 
Blocking keys 2 3 4 5 

#combinations 94,365 216,230 411,962 209,366 

#pairs  53,840 36,549 19,593 8,433 

 

Table 2: Combinations and Results vs. Blocking Keys 

Figure 6 shows the total execution time with respect to 
the number of common blocking keys (kc).  The number of 

mappers (|M|) was 20, and that of reducers (|R|) was 13. 
The total execution time required for both 
combination-based blocking (legend blocking) and 
load-balanced matching (legend load-balanced) are 
displayed. Both times increases as kc increases. As 
mentioned above, the number of resulting pairs decreases 
rapidly as kc increases so that the real matching time 
decreases sharply in fact.  

Table 3 indicates that the maximum load of the 
reducers decreases from 134MB to 56MB for kc = 5 after 
applying load-balanced matching. The data size to be 
handled before applying the proposed load-balanced 
matching is 2.3 times of that after applying the matching. 
In fact, the output data size after the combination-based 
blocking is 74MB for kc = 2, and up to 728MB for kc = 5. 
Without proper balancing of the reducers, many reducers 
would have to wait for the maximum-loaded reducer to 
complete its job. Take kc = 5 for example, before applying 
the balanced-matching, some reducers worked with nearly 
zero-sized data combinations and some were heavily 
loaded with 134MB data. The overall process cannot 
finish until this heavy-loaded reducer completes. Figure 7 
depicts that the workloads can be effectively balanced so 
that the maximum load of the reducers can be decreased 
for all the settings of kc. 

 

 
 

Fig. 6: Performance on Varying the Number of 
Blocking Keys 

Table 3 indicates that the maximum load of the 
reducers decreases from 134MB to 56MB for kc = 5 after 
applying load-balanced matching. The data size to be 
handled before applying the proposed load-balanced 
matching is 2.3 times of that after applying the matching. 
In fact, the output data size after the combination-based 
blocking is 74MB for kc = 2, and up to 728MB for kc = 5. 
Without proper balancing of the reducers, many reducers 
would have to wait for the maximum-loaded reducer to 
complete its job. Take kc = 5 for example, before applying 
the balanced-matching, some reducers worked with nearly 
zero-sized data combinations and some were heavily 
loaded with 134MB data. The overall process cannot 
finish until this heavy-loaded reducer completes. Figure 7 
depicts that the workloads can be effectively balanced so 
that the maximum load of the reducers can be decreased 
for all the settings of kc. 

 

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

7



kc 2 3 4 5 

Before  10.52M 82.97M 99.33M 134.09M 
After 5.7M 11M 24.5M 56M 

 

Table 3: Changes of Maximum Load of the Reducers 

Next, the number of reducers was varied to evaluate the 
effects on total execution time. Figure 8 shows that the 
total execution time decreases as the number of reducers 
increases. As expected, more reducers may speed up the 
process. Note that the experiment uses an extreme large 
dataset by replicating CiteSeerX five times so that the 
differences of execution times can be exploited. When the 
size of input data is not very big, a MapReduce 
configuration with many reducers actually may cause 
extra-communications among the reducres. Thus, the 
dataset was enlarged to highlight the effects of the number 
of reducers. 

 

 
 

Fig. 7: Effects of Load-balanced Matching 

 

 

 

Fig. 8: Performance on Varying the Number of 
Reducers 

 

 

Fig. 9: Scalability of the Proposed Algorithm 

 
The experimental result of evaluating the scalability of 

the proposed algorithm is shown in Fig. 9. The dataset 
CiteSeerX is replicated for 5 and 10 times, respectively. In 
Fig. 9, the total execution time increases linearly as the 
dataset size increases. 

6 Conclusion 
In this paper, we propose an algorithm to solve the entity 
resolution problem for big data analytics, using the 
MapReduce framework. The characteristic of multiple 
keys in entities is presented and utilized for effective key 
blocking (entity distribution) to improve the entity 
resolution process. The proposed algorithm features in the 
combination-based blocking and load-balanced matching. 
The combination-based blocking produces potential key 
combinations and distributes entity lists having common 
keys. The load-balanced matching generates entity-pairs 
combinations and balances the workloads of similarity 
computations among all the reducers in the MapReduce 
configuration. The experimental results show that the 
proposed algorithm may efficiently solve the entity 
resolution problem. Future works may extend this research 
to the entity resolution problem for the RS-join, such as the 
join between DBLP and the CiteSeerX. 

7 Acknowledgement 
The authors are grateful for the comments of the reviewers 
for improving the quality of the paper. This study is 
supported partly by the National Science Concil, Republic 
of China, under grant no. NSC102-2410-H-324-006. 
 

8 References 
Baraglia, R., De Francisci Morales, G., and Lucchese, C. 

(2010): Document similarity self-join with MapReduce. 
Proc. IEEE International Conference on Data Mining: 
731-736. 

Brizan, D. G. and Tansel A. U. (2006): A survey of entity 
resolution and record linkage methodologies. 
Communications of the International Information 
Management Association 6(3): 41-50. 

Chaudhuri, S., Ganti, V., and Kaushik, R. (2006): A 
primitive operator for similarity joins in data cleaning. 
Proc. International Conference on Data Engineering: 
1-5. 

CRPIT Volume 152 - Parallel and Distributed Computing 2014

8



Dean, J. and Ghemawat, S. (2004): MapReduce: 
simplified data processing on large clusters. Proc. 
Symposium on Operating System Design and 
Implementation: 137-150. 

Elsayed, T., Lin, J., and Oard, D. W. (2008): Pairwise 
document similarity in large collections with 
MapReduce. Proc. Association for Computational 
Linguistics on Human Language Technologies: 
265-268. 

Hernández, M. A. and Stolfo, S. J. (1995): The 
merge/purge problem for large databases. Proc. ACM 
SIGMOD International Conference on Management of 
data, 127-138. 

Kiefer, T., Volk, P. B., and Lehner, W. (2010): Pairwise 
element computation with MapReduce. Proc. High 
Performance Distributed Computing: 826-833. 

Kim, Y. and Shim, K. (2012): Parallel top-k similarity join 
algorithms using MapReduce. Proc. International 
Conference on Data Engineering: 510-521. 

Kolb, L. and Rahm, E. (2013): Parallel Entity Resolution 
with Dedoop. Datenbank-Spektrum 13(1): 1-10. 

Kolb, L., Thor, A., and Rahm, E. (2013): Don’t match 
twice: redundancy-free similarity computation with 
MapReduce. Proc. Workshop on Data Analytics in the 
Cloud: 1-5. 

Kolb, L., Thor, A., and Rahm, E. (2012a): Dedoop: 
efficient deduplication with Hadoop. Proc. VLDB 
Endowment 5(12):1878–1881. 

Kolb, L., Thor, A., and Rahm, E. (2012b): Load balancing 
for MapReduce-based entity resolution. Proc. 
International Conference on Data Engineering: 
618-629. 

Kolb, L., Thor, A., and Rahm, E. (2011a): Multi-pass 
sorted neighborhood blocking with MapReduce. 
Computer Science - Research and Development 27(1): 
45-63. 

Kolb, L., Thor, A., and Rahm, E. (2011b): Parallel sorted 
neighborhood blocking with MapReduce. Proc. 
Database Systems for Business, Technology, and Web:  
45-64. 

Lin, J. (2009): Brute force and indexed approaches to 
pairwise document similarity comparisons with 
MapReduce. Proc. ACM SIGIR Conference on 
Research and Development in Information Retrieval: 
155-162. 

Lu, W., Shen, Y., Chen, S. and Ooi, B. C. (2012): Efficient 
processing of k nearest neighbor joins using MapReduce. 
Proceedings VLDB Endowment 5(10): 1016-1027. 

Metwally, A. and Faloutsos, C. (2012): V-SMART-Join: a 
scalable MapReduce framework for all-pair similarity 
joins of multisets and vectors. Proc. VLDB Endowment 
5(8): 704-715. 

Pasula, H., Marthi, B., Milch, B., Russell, S. and Shpitser, 
I. (2002): Identity uncertainty and citation matching. 
Proc. Neural Information Processing Systems: 
1401-1408. 

Vernica, R., Carey, M. J., and Li, C. (2010): Efficient 
parallel set-similarity joins using MapReduce. Proc. 

ACM International Conference on Management of Data: 
495-506. 

Zhang, Q., Zhang, Y., Yu, H., and Huang, X. (2010): 
Efficient partial-duplicate detection based on sequence 
matching. Proc. ACM SIGIR Conference on Research 
and Development in Information Retrieval: 675-682. 

CiteSeerX dataset URL. 

   http://asterix.ics.uci.edu/data/csx.raw.txt.gz (Accessed: 
07/01/2012). 

Hadoop URL.  

http://hadoop.apache.org/ (Accessed: 08/24/2012).  

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

9



CRPIT Volume 152 - Parallel and Distributed Computing 2014

10



Combining Pervasive Computing With Social Networking for a 
Student Environment  

Elizabeth Papadopoulou1, Sarah Gallacher2, Nick K. Taylor1, M. Howard Williams1, Fraser 
R. Blackmun1, Idris S. Ibrahim1, Mei Yii Lim1, Ioannis Mimtsoudis1, Patrick Skillen1 and 

Stuart Whyte1 
1School of Maths and Computer Sciences,  

Heriot-Watt University,  
Riccarton, Edinburgh, EH14 4AS, UK  
2 Intel Collaborative Research Institute,  

University College London,  
London, UK  

E.Papadopoulou@hw.ac.uk, s.gallacher@ucl.ac.uk, {N.K.Taylor, M.H.Williams, F.R.Blackmun, 
I.S.Ibrahim, M.Y.Lim, I.Mimtsoudis, P.Skillen, S.Whyte}@hw.ac.uk  

 

Abstract 
Whereas social networking has become an essential part 
of computing today, pervasive computing is seen as a key 
component for future systems. However, these two 
paradigms are complementary in many respects – the 
former responsible for communication and interaction 
between people, the latter focused on interaction with 
devices and services in the environment surrounding the 
user. By combining these two different paradigms in an 
integrated and seamless fashion one may provide users 
with the advantages of each plus the power obtained from 
using them together. Thus one might combine 
personalization, context awareness, learning, access to a 
wide range of devices and services, etc., with the 
management and operation of communities of users.  This 
is the goal of the SOCIETIES project. By building on 
recent developments in pervasive systems and mobile 
computing, a new type of system that combines pervasive 
with social networking functionality – Pervasive Social 
Networking (PSN) – has been developed based on cloud 
and mobile technologies. Implementation of the basic 
system is complete and as part of the evaluation of the 
system it is currently being used by a group of students in 
a real user trial. This paper focuses on the student aspect 
and describes the requirements gathering exercises 
conducted with students. It then describes the architecture 
of the final system developed to meet the requirements. It 
ends with a brief outline of the final trial.. 

Keywords:  Pervasive systems, social networking, mobile 
computing, cloud computing, smart spaces, ubiquitous 
systems. 

1 Introduction 
As the environment surrounding the user becomes more 
complex, with growing numbers of intelligent sensors and 
devices, so systems are becoming better able to change 
their behaviour to meet the user’s needs. The goal of 
                                                           
Copyright © 2014, Australian Computer Society, Inc.  This 
paper appeared at the 12th Australasian Symposium on Parallel 
and Distributed Computing (AusPDC 2014), Auckland, New 
Zealand. Conferences in Research and Practice in Information 
Technology (CRPIT), Vol. 152. B. Javadi and S. K. Garg, Eds. 
Reproduction for academic, not-for-profit purposes permitted 
provided this text is included. 

pervasive computing (Sun 2001) is to create an intelligent 
environment that provides support to the user in 
interacting with and managing these devices and services 
unobtrusively, without the user needing to be aware of 
and cope with the underlying communications and 
computing technologies. Driven by this important 
challenge, research in this area has followed a variety of 
different approaches with different objectives, and a 
growing number of prototypes have been created to test 
these. Examples include the Adaptive House (Mozer 
2004), MavHome (Youngblood, Holder and Cook 2005), 
GAIA (Roman et al 2002, Ziebart et al 2005), Synapse 
(Si et al 2005), Mobilife (Strutterer et al 2007), Daidalos, 
Ubisec, etc.  

On the other hand, social networking is a paradigm 
that has come into its own in a very short space of time. 
In recent years, online social networking has become one 
of the most significant trends in computer use, 
particularly through social network sites. In so doing it 
has significantly improved social connectivity between 
users and has opened up a whole new world of 
opportunities for exploiting the Internet. The 
unexpectedly rapid take-up of social networking services 
provided by systems such as Facebook, LinkedIn, 
MySpace, Bebo, YouTube, Flickr, etc., has transformed 
the way in which a large number of users use their 
systems, and takes up an increasing proportion of the time 
that the average user spends at his/her computer. 

However, if these two different paradigms can be 
brought together and integrated seamlessly into a single 
system, there are significant benefits to be gained. The 
aim of the SOCIETIES project (Gallacher et al 2012) is to 
build on recent technical developments in these two areas 
to create such a system – a Pervasive Social Networking 
(PSN) system. This combines the strengths of pervasive 
systems with those of social networks to meet the needs 
of a wide range of different applications and users. Thus a 
PSN should enable the user to interact with devices in the 
environment, and communicate with other users either 
individually or as communities. Here a community is 
defined as a collection of participants who share some 
common characteristics or interests. In SOCIETIES a 
community may have its own criteria for membership, 
including the types of information that members are 

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

11



prepared to share and third party services they may have 
access to. 

In order to test out these ideas, the system is being 
evaluated in a set of field trials by three separate user 
groups.  The three different user groups selected for this 
purpose are: 

(1) Students. The motivation behind this choice is that 
students are very adaptive and take to new technology 
very easily. They also serve as an independent group of 
volunteers who are not employed by any of the 
developers of the system nor will they receive any 
academic credit for participating in the trials. 

(2) Disaster Management. A set of professionals who 
meet together annually to simulate large scale disaster 
scenarios will assess the usefulness of the platform in 
disaster management situations.  

(3) Enterprise. A collection of workers from industry 
have been evaluating the usefulness of the platform for 
handling support for delegates at a conference. This part 
has now been completed. 

This paper is concerned with the student user group 
consisting of Computer Science and Information Systems 
students from Heriot-Watt University. Engagement with 
this group began in late 2010 when students were 
involved in the development of key scenarios. These were 
used to drive further design phases including the 
extraction of requirements and use cases. Since then the 
development of the platform has progressed and on 23rd 
October it was subjected to a full user trial. In this trial 20 
students were provided with a device containing a 
prototype PSN platform to trial over a period of six weeks 
and their use of this monitored during this period. 

The next section provides a brief background.  The 
derivation of requirements through storyboarding and the 
immersive environment is described in section 3 while 
section 4 provides a brief introduction to the platform. 
Section 5 gives a detailed view of the components of the 
platform. Section 6 provides a brief description of the 
final trial and section 7 concludes. 

2 Background 

2.1 Pervasive Computing 
The goal of pervasive computing is to create an 
intelligent environment in which devices provide 
unobtrusive connectivity and access to services, thereby 
improving user experience and quality of life without the 
user needing to be aware of and cope with the underlying 
communications and computing technologies. In this 
environment, the world around us is interconnected as a 
set of pervasive networks of intelligent devices that 
cooperate with each other and autonomously collect, 
process and exchange information, in accordance with the 
context and preferences of the user.   

Pervasive computing embraces a wide range of diverse 
applications, including those of mobile computing 
systems and services. Driven by the important challenges 
presented by pervasive computing (Zaslavsky 2002), 
research in this area has followed a wide variety of 
different approaches with different objectives in mind, 
and a growing number of prototypes have been created to 
test different combinations of these. These diverse efforts 
can be categorized in various ways. For example, a brief 

summary of 29 software infrastructures and frameworks 
from a number of different projects is provided by 
Endres, Butz and MacWilliams (2005). This groups them 
into three main categories: Augmented Reality, 
Intelligent Environments and Distributed Mobile 
Systems. 

Following a different way of grouping these 
developments, one major class of projects is that 
concerned with fixed smart spaces. A fixed smart space is 
a bounded physical environment filled with adaptive 
devices (such as lights, window shutters, etc.) that can be 
automatically managed to meet the needs of individual 
users. The main focus here lies in developing different 
forms of intelligent building, the most important of which 
is the Smart Home. This is motivated by the strong belief 
that pervasive technology can be used to provide safe and 
secure support for elderly and disabled citizens, which 
will facilitate their independent living and reduce the 
need for permanent carers or institutions. Besides 
covering the automatic control of devices providing 
lighting, temperature control, security, etc., the research 
has also extended to energy conservation in a smart 
building as well as a variety of intelligent appliances. 
Examples of systems of this type include the Adaptive 
House, MavHome, GAIA, Synapse, Ubisec (Groppe and 
Mueller 2005), etc. 

Another major group has been that focused on mobile 
users with the aim of providing them with devices, 
networks and services to meet their needs wherever they 
may be. The location of the user plays a large part in the 
decision making process. The provision of support for 
mobile users and the problems associated with this, have 
been investigated in a number of research projects with 
corresponding prototypes developed to demonstrate and 
assess different approaches. For example, the European 
project Daidalos explored two separate architectures 
(Williams et al 2006), and developed prototypes based on 
each of these. By contrast, Mobilife focused on the issues 
of privacy and trust as well as on maintaining a “shared 
cognition” amongst groups of users. The project Spice 
(Cordier et al 2006) developed a platform for creating and 
executing mobile services.  

The Persist project (Roussaki et al 2010) attempted to 
bridge the gap between these two classes of project by 
developing a prototype based on a Personal Smart Space 
(PSS) approach. This is a hybrid approach that can be 
used as a fixed smart space (taking advantage of sensor 
equipped buildings) as well as a mobile smart space that 
interacts with other surrounding fixed and mobile smart 
spaces (Papadopoulou et al 2010). 

However, despite all the developments in this area, 
exploitation of these ideas has been slow.  

2.2 Social Networking 
In recent years, online social networking has become one 
of the most significant trends in computer use, 
particularly through social network sites. Using these 
sites, people can create accounts and connect digitally to 
friends, family, and others with ease. They can publicly 
share information and media about themselves and their 
lives, engage in chat with friends, form and join groups of 
users, and more. Certain sites, such as foursquare, add a 
location-based element to online social networking, 

CRPIT Volume 152 - Parallel and Distributed Computing 2014

12



where users can check in to key locations and share their 
location details and histories with friends. 

The popularity of social network sites is remarkable, 
and continues to grow. However, such sites are heavily 
geared towards networking in the digital realm. People 
have many real-world relationships that involve physical 
interaction to an extent that transferring them to a social 
network site is only somewhat useful. Even the 
aforementioned location-based services, while making 
some headway in bridging the physical-digital divide, are 
not exploiting the rich potential of real-world events and 
interactions to influence digital relationships and vice 
versa.  

2.3 Combining the Two 
The aim of the SOCIETIES project is to bring together 
the two different paradigms of pervasive computing and 
social networking to create a system that can benefit from 
both and from their combination.  

In the case of pervasive computing the system enables 
the user to interact with devices in the vicinity. It 
monitors the user’s actions and builds up a detailed 
history of these from which it can infer user preferences 
and user intent depending on the context of the user. 
These can then be used to assist the user by taking actions 
on the user’s behalf when a relevant context is identified. 

In the case of social networking the user controls the 
communications that he/she has with other users. This 
includes the information (text, pictures, etc.) that the user 
wishes to share, the other users who are allowed access to 
such information, and the access the user makes of other 
user’s information. Communities (or groups) can be 
formed and within them subsets of information can be 
shared. And so on.  

In combining the two the aim is to integrate the 
facilities of both. Thus the notion of monitoring user’s 
actions and using learning techniques to identify patterns 
of behaviour, and hence user preferences and user intent, 
can be applied to personalising the user’s interactions 
with social networking. 

Moreover, a pervasive system can be in a very good 
position to detect apparent real-world relationships and 
communities, as well as the potential for new 
communities to be formed based on criteria such as 
shared interests, and to bring these into the digital realm. 
Thus it can be developed to identify potential new 
communities or existing ones that might be of interest to 
the user.  

The use of context management within pervasive 
systems provides a rich source of context that can be 
exploited by a social networking system to provide a 
wider range of information with access controlled in a 
more context-dependent fashion. In turn the social 
networking systems can provide useful information on 
the user which can assist the pervasive system. By taking 
advantage of location information and social networking 
information on other users in the vicinity this can create 
opportunities for new applications in the future. However, 
all this must be done in the context of strict privacy 
controls to ensure the protection of user information. 

3 Gathering Requirements 
This section describes the requirements gathering 
exercises conducted with the students in preparation for 
the development of the SOCIETIES platform.  

After a short introduction to the basic concepts of the 
SOCIETIES project, a combination of techniques (such 
as brainwriting, brainstorming and bodystorming) were 
performed with the students to identify scenarios that they 
felt were most useful or interesting for a PSN prototype to 
support.  The feedback covered a wide range of situations 
from those that involved enhancing common practice to 
those that were novel.  This exercise helped to identify 
the opportunity spaces for the PSN prototype in the 
everyday life of a group of student users. 

This led to two preparatory user trials that took place 
in 2011.  The primary objective of these trials was to 
record user response to an early low fidelity prototype of 
the proposed PSN system.  The trials were carried out 
using two methodologies: storyboarding and immersive 
environments.  Both techniques employ scenario based 
vision prototypes which serve the combined tasks of 
defining early design focus for developers and providing 
a site for evaluating user responses. 

3.1 Storyboard Evaluation 
The scenarios identified in the initial exercise were used 
to create a set of storyboard slides and an associated set 
of questions which were used to conduct a storyboard 
evaluation. Some fifteen first year Computer Science 
(CS) and Information Systems (IS) students took part in 
the session. 

The storyboard slides detailed eight scenes that 
illustrated the SOCIETIES system supporting a student 
user in various situations. At key points during the slide 
presentations the students were asked multiple choice 
questions to gain their feedback on a concept that had just 
been presented.  Each participant used a voting keypad to 
answer the multiple choice questions anonymously.  The 
output from all keypads was captured on the session 
coordinator's laptop using voting system software.  

A total of 19 questions were posed to the participants 
regarding the SOCIETIES concepts shown during the 
presentation of the storyboard slides.  In this section, only 
the most significant questions and responses are 
presented in Table 1 although the entire result set is 
available by request from the project website 
(SOCIETIES project website). 

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

13



 

Table 1: Key results from the storyboard evaluation 

3.2 Immersive Environment Evaluation 
As with the storyboard evaluation, first year Computer 
Science and Information Systems students were invited to 
take part in the immersive environment evaluation. A 
total of thirteen students took up this invitation with each 
student being allocated a date and time for their 
individual immersive experience test which they attended 
alone.  Each test took between ten and fifteen minutes to 
complete. 

The immersive environment was erected in a test room 
and was designed to reflect physical locations that the 
students were familiar with such as University corridors 
and a meeting area.  A number of devices were installed 
in the environment as interaction devices in accordance 
with the evaluation script.  Figure 1 shows an aerial view 
of the immersive environment with hotspots and devices 
marked. 

  

Figure 1: Aerial view of the immersive environment 

Three screens acted as University advertisement 
screens that would show personalised content as the test 
participant walked past.  The augmented reality (AR) 
glasses provided personalised content and other details in 
a more discrete fashion.  An HTC smart phone acted as 
the participant's SOCIETIES device through which the 
trial participant could receive mock community alerts. 

The controller was manipulated by the test coordinator 
to control and adapt the other devices within the 
environment appropriately.  Several recording devices 
such as a camcorder and a dictaphone were also installed 
in the immersive environment to capture the reactions and 
feedback from participants.  The immersive environment 
itself was a pathway through the various devices.  The 
pathway was marked with five "Hotspots", each 
indicating a point where the participant would interact 
with a device or experience some SOCIETIES-like 
behaviour. 

Each participant answered an average of 32 questions 
regarding the SOCIETIES concepts experienced within 
the immersive environment.  The number of questions 
varied based on the decisions taken by participants during 
the immersive experience.  In this section, only the most 
significant questions and responses are presented in Table 
2 although the entire result set is available by request 
from the project website (SOCIETIES project website).  

 

CRPIT Volume 152 - Parallel and Distributed Computing 2014

14



 

Table 2: Key results from the immersive environment 
evaluation 

3.3 Comparison of Results 
When the first trial (Storyboard Evaluation) was 
conducted, the aim was to present a set of imaginative 
scenarios to the participants and obtain their reactions to 
these. In doing so we were not inhibited by the 
constraints of actually demonstrating these scenarios. The 
second trial was much more focused and constrained by 
what we could do in the short amount of time that the 
participants were engaged in the trial. Although this had 
the disadvantage of being less imaginative, it had the 
advantage of letting the student actually experience the 
phenomena first hand. 

Although it was not our intention to compare the 
results of the two trials, it was noticeable that, while both 
sets of results showed a general positive attitude towards 
SOCIETIES concepts, the results obtained from the 

immersive trial were in places more positive than those 
obtained from the storyboard trial. 

In particular, this included: 
(1) When queried about joining a community, in the 

storyboard trial participants indicated that this would 
depend on existing members whereas in the immersive 
trial they said it would not. 

(2) In the storyboard trial participants did not like the 
idea of being automatically joined to any community 
whereas in the immersive trial there is evidence that 
automatic joining would be acceptable in certain cases. 

(3) With regard to community information, in the 
storyboard trial most participants did not think 
community preferences would be useful whereas in the 
immersive trial all participants thought that this would be 
helpful. 

(4) When asked whether they would like help in 
introducing them to other community members, most 
storyboard participants were unsure or against the idea 
whereas most immersive trial participants who used the 
AR glasses felt that this was really useful functionality. 

(5) In the case of automatic behaviour, nearly all 
storyboard participants wanted to confirm before an 
automatic action was started whereas immersive trial 
participants were happy with some automatic actions on 
their behalf. 

Thus, although it was not our intention to compare the 
two sets of results, especially since the number of 
participants is small, it did seem noticeable that, if 
participants actually experience the phenomena before 
being questioned about them, a slightly different result 
might be obtained compared to that obtained from a 
storyboard trial. In this case the results were more 
positive towards some of the concepts of a PSN platform. 

4 SOCIETIES Platform 
The requirements gathered from the three separate user 
groups were merged and an architecture derived that 
would provide the functionality needed to satisfy them. 
This architecture was based on the assumption that the 
main device with which the user interacts with the system 
is a smart phone. However, there may also be occasions 
when the user wishes to interact with the system via a 
laptop or PC. Whatever the case, since parts of the system 
require significant processing power, it has been assumed 
that the backend of the system resides in a cloud.  

To simplify the architecture, it is divided into several 
layers, each of which incorporates various components 
and component blocks essential to the design of a PSN 
environment, as shown in Fig. 2. 

 
 
 
 

 
 

 

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

15



 
 

Figure 2: Architecture of the Societies Platform 

 
Assuming that the main device with which the user 

interacts with the system, is a smart phone, we have based 
our implementation on an Android-based smart phone, 
although it is also possible to use other devices such as a 
notebook or laptop to interact with the system. Due to the 
more limited capabilities of a smart phone, the set of 
software components located on such a device is limited 
and provides minimum functionality. This is referred to 
as a Light Node. On the other hand a notebook or laptop 
may host more of the functionality of the system and is 
referred to as a Rich Node. In order to provide the full 
range of functionality on each type of node, both types 
communicate with a Cloud Node where most of the 
processing takes place.  

Key to the system is the distinction between an 
individual user and a community of users. The different 
parts of the system that operate on behalf of a particular 
user are referred to as a Cooperating Smart Space or CSS. 
This represents a “smart space” of devices and 
applications that belong to that user. For example, the 
user may have both a smart phone and a laptop as well as 
several other smart devices. These together with the 
components in the cloud form a smart space for the user. 

On the other hand, a community of users is referred to 
as a Community Interaction Space or CIS. When a 
community is formed, it is set up by a user through 
his/her CSS for a particular purpose. In general a 
community may have its own criteria for membership, 
including the types of information that members are 

prepared to share with each other. A community may also 
have associated with it a set of third party services that 
members may have access to. 

5 Layers of the Architecture 
The architecture can best be viewed as a layered one in 
which the Cloud Node contains the full set of components 
whereas the Light Node contains a minimal subset of 
them and relies on the Cloud Node to do most of its 
processing.    

The Rich Node is somewhere between the two in that 
it has a more substantial subset of the components, 
making it possible to do more processing on the node 
without the constant dependence on the Cloud Node 
although it does still rely on the Cloud Node for some 
(e.g. offline data mining of the history data). 

The four layers of the architecture are as follows.  

5.1 Node Components 
At the lowest level one has the node components 
themselves and the software needed for them to 
communicate with each other (Communication 
Framework) and to discover one another (Discovery). 

At the very minimum the user will have a Light Node 
in the form of a smart phone and a Cloud Node. The 
Communication Framework provides the means for these 
two to communicate with each other. More generally the 
user may have other devices which can connect to the 

CRPIT Volume 152 - Parallel and Distributed Computing 2014

16



Cloud Node and these too may use the Communication 
Framework. 

In addition security is an important component at this 
level. This is mainly responsible for access control.  

5.2 Participant Components 
This layer contains the largest part of the system. It 
includes the main components providing functionality for 
the individual user or CSS. These include: 

5.2.1 User Context 
Context plays a key role in pervasive systems. 
Information about the context of a user is captured and 
stored in a Context Management system. Some of this 
information may be entered directly by the user (e.g. 
interests), other information is gathered from sensors or 
other devices and needs to be updated regularly. 

Sometimes different sources may be used to provide 
information for the same attribute. Location is a good 
example. Out of doors one may use GPS to provide 
accurate location information while when the user is 
indoors one might use RFID tags to locate him/her. 

In the SOCIETIES platform a Context Management 
system is used that keeps track of a range of different 
attributes, and uses three different methods to keep track 
of user location. 

5.2.2 Personalisation 
Personalisation is concerned with the set of techniques 
that are used to adapt the behaviour of the system to meet 
the needs and preferences of an individual user. Basically 
this means that under certain conditions (in certain 
contexts) the system needs to take specific actions on 
behalf of the user. These may involve setting parameters 
for a third party service, selecting or initiating a service, 
responding to a request for the user’s personal 
information, etc. 

In the SOCIETIES platform this subsystem uses two 
very different approaches to determine when to take 
action and what action to take. The first is based on user 
preferences. These can be viewed as rules of the form: 

IF a context arises THEN perform some action 
although in practice the process is more complex. 

The second is referred to as User Intent and is based 
on sequences of actions that are performed by the user in 
particular contexts. Thus if the system detects that the 
user is part way through a known action sequence, it can 
predict what action to perform in the future provided a 
suitable context match arises. 

In the SOCIETIES platform two different techniques 
are used for each of these two different approaches. 

5.2.3 Learning 
To build up a set of user preferences, one cannot expect 
the user to provide these manually. Instead the system 
monitors the user’s actions plus the context in which they 
occur and uses this to “learn” the user’s preferences. 

Since two different techniques are used for handling 
user preferences in the SOCIETIES platform, two 
different styles of learning are required. The first 
technique used is based on a neural network and learning 
for this is straightforward. The second technique is based 

on preference rules and a variation of the C4.5 algorithm 
is used. This is coupled with a confidence level indicator 
which provides a measure of the degree of confidence 
associated with a preference rule at any stage. 

In addition to these the project is also experimenting 
with the use of a Bayesian Network to handle input from 
bio-sensors. Again learning is straightforward. 

5.2.4 User Agent 
With all these different techniques being used to predict 
actions for the system to perform on the user’s behalf, an 
arbiter is required to select the most appropriate one. The 
User Agent is the component responsible for taking the 
outputs from these different techniques and deciding 
which to perform.  

It is also responsible for communication with the user. 
Thus whenever the system decides to perform an action 
on the user’s behalf, the User Agent informs the user and 
provides the user with an opportunity to reject this if the 
action is not what he/she wants. If the user does nothing, 
the system proceeds with the action. 

5.2.5 Privacy  
Protection of user privacy is essential in a system where 
the user’s personal information may be shared with other 
users. In the SOCIETIES platform the Privacy component 
is responsible for providing the support to enable the user 
to manage personal information and its disclosure. 

To determine what data attributes may be disclosed 
and to whom, the system uses the process of Privacy 
Policy Negotiation between the preferences of the user 
and the requests for data from third party services or 
communities. To determine in what form the data should 
be released, a process of obfuscation is employed. And to 
provide further protection to the user a system of multiple 
identities is used.  

5.2.6 Trust 
The decision to share information with another user or a 
third party service does rely to some extent on the degree 
of trust that the user has in the other user or the third 
party service. 

As the number of contacts a user has and the number 
of third party services available to a user increases so the 
need for the user to assess the trustworthiness of these 
entities becomes increasingly important. The set of 
communities to which a user belongs can be used to 
provide support for the trust assessment mechanism. 

5.2.7 Social Network Connectors 
By enabling the system to connect to social network sites 
directly though the interfaces provided by the social 
network systems, the SOCIETIES platform can access 
information about users directly and provide this to the 
components of the system that might use it. In particular 
the communities within SOCIETIES can benefit from 
information on their members obtained from these sites, 
as can third party services. 

In the current state of the system one can obtain 
information from social network sites but not write 
information to them.  

 

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

17



 

 
 

Figure 3: Set up of pervasive Learning Zone 

 

5.3 Community Components 
The Community Component Layer contains three 
components that provide functionality relating directly to 
communities. These are as follows.  

5.3.1 Community Context 
Just as the individual user has an associated set of context 
attributes pertaining to that user, each community may 
have context attributes associated with it that are derived 
from the attributes of its individual members.  

An important example of a community context 
attribute is location. When a number of members of a 
community are gathered together, it may be useful for 
other members to know where this is taking place. Other 
community context attributes may be derived from mean 
or median values of the attributes of its members (e.g. 
average age).  

5.3.2 Community Personalisation 
Here the notion of a user preference has been extended to 
that of a community preference. This takes the same form 
as an individual user preference and hence can be used in 
the process of personalisation in the same way. 

5.3.3 Community Learning 
The SOCIETIES platform provides a mechanism for 
processing the individual user preferences of the 
members of a community to infer or “learn” the common 
preferences associated with the community. Each 
individual member can choose to inherit some or all of 

these. This is particularly important for new members 
joining a community.  

5.4 Umbrella Components 
This layer lies outside the other three layers and provides 
functionality which applies to all CSSs/CISs. There are 
four components in this layer. These are:  

(1) CSS/CIS Directory – which provides typical 
directory services; 

(2) Identity – which controls the unique identities 
allocated to CSSs; 

(3) Recommendations – which recommends relevant 
existing or potential CISs to CSSs; 

(4) Marketplace – which provides access to third party 
services for users. 

6 Full User Trial 
The full user trial started on 23rd October and is 
scheduled to run for six weeks. A group of 20 student 
volunteers have been issued with RFID tags and smart 
phones (Samsung Galaxy SIII) loaded with the software 
for Light Nodes. 

The main area where the system is being used is the 
Learning Zone in the School of Mathematical and 
Computer Sciences. This is an area adjacent to two main 
lecture rooms that is furnished with tables and chairs used 
by students for work and relaxation. This has been 
equipped with RFID wakeup units and readers, large 
plasma screens, XBOX Kinects, etc. as shown in Fig. 3. 
In addition we have two servers hosting the Cloud Nodes 
which contain the basic system as well as nine third party 
services.  

CRPIT Volume 152 - Parallel and Distributed Computing 2014

18



7 Summary and Conclusion 
Pervasive computing and social networking are two 
complementary paradigms which the SOCIETIES project 
aims to bring together to create a Pervasive Social 
Networking System. A system has been created involving 
a combination of mobile devices (smart phones and 
laptops), cloud computing and devices in the user’s 
environment to provide the basic functionality required. 
In addition a number of third party services have been 
developed to run on this system. The system is currently 
being evaluated by three trial groups. This paper focuses 
on one of these groups, namely university students. 

At the outset of the SOCIETIES project, a student 
demographic was identified, and this group has been 
involved in several activities, with the intention of 
capturing their requirements for such a system. Through 
this process they have also been exposed to ideas of 
pervasive computing and what the SOCIETIES system 
can offer them. By the time that the full trial began on 
23rd October we believe that they had sufficient 
understanding to be able to make full use of the system.   

Section 3 describes two exercises conducted with the 
students to establish requirements for the system. The 
first was a storyboard evaluation, the second an 
experiment with an immersive environment.  

From the requirements from all three user trial groups 
the design for a PSN was derived and the architecture of 
this is described in section 4 with details of the 
components given in section 5.  

8 Acknowledgements 
This work is supported by the European Union under the 
FP7 programme (Societies project) which the authors 
gratefully acknowledge. The authors also wish to thank 
all colleagues in the Societies project. However, it should 
be noted that this paper expresses the authors’ personal 
views, which are not necessarily those of the Societies 
consortium. Apart from funding the Societies project, the 
European Commission has no responsibility for the 
content of this paper.    

9 References 
Cordier,C., Carrez, F., Van Kranenburg, H., Licciardi, C., 

Van der Meer, J., Spedalieri, A., Le Rouzic, J.P. and 
Zoric, J. (2006): Addressing the Challenges of Beyond 
3G Service Delivery: the SPICE Service Platform. 
Proc. Workshop on Applications and Services in 
Wireless Networks (ASWN ’06).  

Endres, C., Butz, A., and MacWilliams, A. (2005): A 
survey of Software Infrastructures and Frameworks for 
Ubiquitous Computing, Mobile Information Systems 
Journal 1:41-80.  

Gallacher, S., Papadopoulou, E., Taylor, N.K., Blackmun, 
F.R. and Williams, M.H. (2012): Intelligent Systems 
that Combine Pervasive Computing and Social 
Networking. Proc. Ninth International Conference on 
Ubiquitous Intelligence and Computing (IEEE UIC 
2012), Fukuoka, Japan, 151-158, IEEE Computer 
Society. 

Groppe, J. and Mueller,W. (2005): Profile Management 
Technology for Smart Customizations in Private Home 

Applications. Proc 16th International Workshop on 
Database and Expert Systems Applications (DEXA’05), 
226-230.  

Mozer, M.C. (2004): Lessons from an Adaptive House. In 
Smart Environments: Technologies, protocols and 
applications. Cook, D. and Das, R. Eds. 273-294. 

Papadopoulou, E., Gallacher, S., Taylor, N. K. and 
Williams, M. H. (2010): Personal Smart Spaces as a 
Basis for Identifying Users in Pervasive Systems. Proc. 
International Workshop on Ubiquitous Service Systems 
and Technologies (USST 2010), Xian, China, 88–93, 
IEEE CS Press. 

Roman, M., Hess, C.K., Cerqueira, R., Ranganathan, A., 
Campbell, R.H. and Nahrstedt, K. (2002): Gaia: A 
middleware infrastructure to enable smart spaces, IEEE 
Pervasive Computing 1:74-83. 

Roussaki, I.. Kalatzis, N., Doolin, K., Taylor N. K., 
Spadotto, G., Liampotis, N. and Williams, H. (2010): 
Self-Improving Personal Smart Spaces for Pervasive 
Service Provision. In Towards the Future Internet,  
Tselentis, G., Galis, A., Gavras, A., Krco, S., Lotz, V., 
Simperl, E., Stiller, B. and Zahariadis, T., 193-203, 
IOS Press. 

Si, H., Kawahara, Y., Morikawa, H. and Aoyama, T. 
(2005): A stochastic approach for creating context 
aware services based on context histories in smart 
Home. Proc. 1st International Workshop on Exploiting 
Context Histories in Smart Environments, 3rd 
International Conf on Pervasive Computing (Pervasive 
2005), 37-41. 

SOCIETIES project website, http://www.ict-societies.eu 

Strutterer, M., Coutand, O., Droegehorn, O. and David,K. 
(2007): Managing and Delivering Context-Dependent 
User Preferences in Ubiquitous Computing 
Environments. Proc. International Symposium on 
Applications and the Internet Workshops (SAINTW 
’07). 

Sun, J. (2001): Mobile ad hoc networking: an essential 
technology for pervasive computing. Proc. 
International Conference on Info-tech & Info-net, 316-
321. 

Williams, M. H., Taylor, N. K., Roussaki, I., Robertson, 
P., Farshchian, B. and Doolin, K. (2006): Developing a 
Pervasive System for a Mobile Environment. Proc. 
eChallenges 2006 – Exploiting the Knowledge 
Economy, 1695 – 1702.  

Youngblood, M.G., Holder, L.B. and Cook, D.J. (2005): 
Managing Adaptive Versatile Environments. Proc. 3rd 
IEEE International Conference on Pervasive 
Computing and Communications (PerCom '05), 351-
360. 

Zaslavsky, A. (2002): Adaptability and Interfaces: key to 
efficient pervasive computing. Proc. NSF Workshop on 
Context-Aware Mobile Database Management, 24-25.  

Ziebart, B. D., Roth, D., Campbell, R. H. and Dey,A. K. 
(2005): Learning Automation Policies for Pervasive 
Computing Environments. Proc. 2nd International 
Conference on Autonomic Computing (ICAC ’05), 193-
203.  

 

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

19



CRPIT Volume 152 - Parallel and Distributed Computing 2014

20



Developmental Directions in Parallel Accelerators

K.A. Hawick D.P. Playne

Computer Science, Institute of Natural and Mathematical Sciences
Massey University – Albany

North Shore 102-904, Auckland, New Zealand
Email: {k.a.hawick, d.p.playne}@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

Abstract

Parallel accelerators such as massively-cored graphi-
cal processing units or many-cored co-processors such
as the Xeon Phi are becoming widespread and af-
fordable on many systems including blade servers and
even desktops. The use of a single such accelerator is
now quite common for many applications, but the use
of multiple devices and hybrid combinations is still
very unusual. The main barrier to greater uptake of
multiple accelerators in applications is still the soft-
ware ecosystem and in particular the interoperability
limitations of setting up appropriate software stacks
for novel accelerator combinations. We present some
benchmark results for various multiple and hybrid ac-
celerator combinations using some up to date modern
devices and discuss feasible developmental directions
for high computational performance scientific appli-
cations software to use them. We compare results
with equivalent benchmarks on conventional multi-
cored CPUs.

Keywords: accelerator; GPU; Xeon phi; massive core;
multi core; scientific applications; software ecosystem.

1 Introduction

An ability to exploit concurrency(Oskin 2008) in
user application programs(Sutter & Larus 2005,
Cantrill 2006) and not just at the operating
system level(Knauerhase, Cledat & Teller 2012,
Kleidermacher 2008) is increasingly important. Most
users will typically have at least two and possibly four
cores in their desktop CPU at the time of writing. Six
cores per CPU is already common and eight core Intel
CPUs(Reinders 2007) or 16-core AMD CPUs(Butler,
Barnes, Sarma & Gelinas 2011) will likely become
common.

Processing accelerators continue to be a widely
used solution to attaining good computational per-
formance while avoiding excessive heat density issues
from designing CPUs with overly high clock speeds.
There remain a number of different approaches to
providing parallelism in such accelerators however.
These are typified by the many fine grained cores
found in Graphical Processing Units (GPUs) from
vendors such as NVidia, and the many integrated tra-
ditional CPU cores used in Intel’s MIC/Xeon Phi de-

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at 12th Australasian Symposium on Parallel
and Distributed Computing (AusPDC2014), Auckland, New
Zealand. Conferences in Research and Practice in Informa-
tion Technology, Vol. 152. B. Javadi and S. K. Garg, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

Figure 1: Intel Xeon Phi (top) and NVidia Kepler
GPU (bottom) accelerator architectures.

vices.

These vendors have very different approaches to
servicing their processors in terms of cache, memory
and bus structures(Patterson & Hennessy 2009) as
well as managing potential concurrency through the
varying accelerator architectures.

Figure 1 shows a summary of the architectures of
the Intel Xeon Phi with its ring based bus connecting
around 60 conventional CPU cores (above) and the
multi streaming architectural approach of NVidia’s
Tesla GPU accelerator with current models having
around 2000 cores.

Graphical Processing Units (GPUs) and other
devices(Leist, Playne & Hawick 2009) have already
proven themselves a valuable mechanism to speed up
many applications using a data-parallel programming
model that can accelerate a conventional CPU. It
is even becoming economically viable to host mul-
tiple GPUs on a single CPU host node(Hawick &
Playne 2013), and clusters using this multi-GPU as-
sisted node model are becoming prevalent.

We are exploring a range of combinations of multi-
core CPUs, running various thread management soft-
ware systems to manage their multiple GPU acceler-
ators. We anticipate significant flexibility and scal-
ability achievable using this approach and believe it
has major implications for future generation HPC sys-
tems including clusters and supercomputer facilities.

Many of the supercomputers in the present Top
500 list(TOP500.org n.d.) now incorporate graph-

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

21



ical processing unit devices as accelerators for the
individual nodes. Such systems use fast intercon-
nection technologies such as InfiniBand or a propri-
etary technology instead of regular Ethernet switch-
ing technology. These interconnects aim at providing
fast and low latency interconnections between indi-
vidual nodes, each of which will typically run a full
operating system software stack. Applications pro-
grammers will typically use a software model such as
message passing - implemented with for example MPI
or a variant - to communicate between participating
nodes in a single MIMD program.

Individual nodes however can be accelerated by
one or more devices. Although other accelerators
such as customised field programmable gate arrays
are sometimes used, at the time of writing GPUs are
becoming a very popular acceleration devices. Typ-
ically a hosting CPU node is accelerated by one or
more GPU devices which are connected to the CPU
using PCI or PCI Express bus technology.

Applications programmers invoke special codes on
the GPU that are called from the normal CPU pro-
gram. The GPU typically offers a very large number
of simpler cores than those found on a CPU. The par-
allelism model most likely used on GPUs is that of fine
grained data parallelism whereby very many threads
are used to manage data-parallel operations. Modern
GPUs often are structured with some shared facili-
ties such as floating-point units(FPUs) – not all the
individual cores will have an FPU and they are typi-
cally grouped together so that for example some sort
of multi-processing unit with floating point capability
acts to group together individual simpler cores.

The CPU hosting program can in fact be multiple
threaded, and this approach is often used to make use
of the multiple cores that a modern CPU will typi-
cally incorporate. It is also possible for these cores to
run more than one thread and this approach is often
favoured if there are slow memory or data access op-
erations required. A single hardware CPU core will
quite often be given two or more applications threads
to run to allow data accesses to be suitably inter-
leaved with computations. Modern CPUs will often
have special extra hardware capabilities to explicitly
support this approach.

We therefore find that there are several hierarchi-
cal layers of parallelism available to exploit on a multi-
noded, multi-cored, GPU-accelerated supercomputer
system. Different applications and user schedules can
make use of these in many different manners to exploit
the overall hardware resource to best effect. The fol-
lowing terminology is useful to describe this hierarchy
of levels of parallelism, where we give some references
to our recent work against each relevant category:

Grid: Distributed and often separately owned super-
computing resources can be used

Node: Individual Nodes connected with InfiniBand
or Ethernet switching technology

Multi-CPU: Multiple CPUs on multi-socket moth-
erboard share node main memory

CPU: Individual CPU has multiple cores of high in-
dividual capability including their own floating
point unit

CPU-Core: CPU core can run more than one ap-
plication thread

Accelerator-Device CPU thread can be acceler-
ated by an additional device such as a GPU or a
MIC

GPU-MP: GPU device has some number of indi-
vidual multi processors, usually with their own
floating point unit and controlling some group of
lower-level simple cores

Accelerator Core: Individual fine-grained vector
or SIMD operations carried out by the accelera-
tor core

There is potential scope for work at all levels of
this hierarchy. Practicably, the financial resources re-
quired to work at the high end of supercomputing
are now restricted to a very few institutions. Nev-
ertheless it is quite feasible to progress systems soft-
ware, library development, applications development
and other parallel computing software research any-
where. In this present article we focus on the use
of accelerator devices and how they are programmed
and perform.

Our article is structured as follows: In Section 2 we
summarise some of the important details for the de-
vices we consider in this article, including Intel Xeon
CPUs and AMD Bulldozer CPUs and Intel Xeon Phi
MIC and NVidia Kepler GPU accelerators. We de-
scribe some benchmark codes we have used to com-
pare the attainable performance on these platforms in
Section 3 and discuss the various parallel and thread-
ing software approaches that can be used to program
them in Section 4. We give some performance re-
sults in Section 5 and a discussion of developmental
directions for accelerators in Section 6 and offer some
conclusions and areas for further work in Section 7.

2 CPUs and Accelerators

In this article we consider four principle devices: the
Intel Xeon CPU; the AMD Bulldozer CPU; the In-
tel Xeon Phi many-cored accelerator; and the NVidia
Kepler GPU accelerator - all of which represent the
state of the art at the time of writing. The CPUs have
2,4,6,8, or 16 cores and come as conventional socket
mounted chips on the motherboard - albeit with sub-
stantive heatsinks cladding them. The accelerators
both come as PCI bus slot mounted cards usually
will built in separate cooling units. While it is no-
toriously difficult to make sense of price performance
data especially given currency exchange spot rates, as
a historical record, the devices we consider cost ap-
proximately NZ$1,000 - NZ$2000 for the CPUs, and
around NZ$4,000 - NZ$6,000 for the accelerator cards
at the time of writing.

2.1 Intel Xeon

The Intel Xeon processors come in many different
models and architectures but all follow the same
principle design of a multi-core processor. Cur-
rently 2 to 8 processing cores, each of which is ca-
pable of supporting two threads with Intel R© Hyper-
Threading. Each of these cores accesses memory
through a number of caches to improve memory ac-
cess performance (Intel 2013). The main Xeon pro-
cessor used for evaluation in this work is the 8-core
Xeon E5-2687W at 3.10 GHz.

2.2 AMD Bulldozer

The Bulldozer architecture from Advanced Micro De-
vices (AMD) is a multi-core CPU design split into
modules. Each of these modules consists of two cores

CRPIT Volume 152 - Parallel and Distributed Computing 2014

22



capable of executing a single-thread each. These Bull-
dozer cores also have levels of cache to improve mem-
ory performance (Butler et al. 2011). The Bulldozer
CPU tested in this paper is the AMD Opteron 6274
running at 2.2 GHz.

2.3 Intel Xeon Phi

Our Xeon Phi cards have 8 memory control units and
60 cores running at 1.05 GHz and connected in a ring
network. Each core has 512kB L2 cache and is essen-
tially a 64-bit “Knights Corner” architecture capable
of supporting 4 hardware contexts at once and using
Intel’s thread apparatus, needs at least two running
threads to make best use of the clock cycles(Saule,
Kaya & Catalyurek 2013).

2.4 Nvidia Kepler

The Kepler architecture is the current generation
GPU design from Nvidia. The GK110 architecture
consists of 15 SMX processor units with six memory
controllers (NVIDIA 2012). Each of these SMX units
contains 192 cores and various optimised memory ar-
eas. The most significant change from the early GPU
designs (Leist et al. 2009) has been the introduction
of L1 and L2 cache into the memory subsystem.

3 Benchmarks

A challenge in benchmarking processing devices
with very different architectures is choosing a suit-
able benchmark task or test that can be expressed
portably in a manner that can actually be encoded
on all devices under consideration fairly. There have
been many good historical benchmark suites devel-
oped including the Livermore Loops(McMahon 1986)
which are mostly simple computational tasks ex-
pressed as iterative loops and the now well known La-
pack linear algebra benchmarks(Demmel, Dongarra,
DuCroz, GreenBaum, Hammarling & Sorensen 1988,
Bischof & Dongarra 1989).

Porting even these well known benchmark codes
to new platforms represents quiet a lot of work and
in many cases it is not always even fair to compare
disparate platforms with application benchmarks that
may represent quite particular areas of optimisation
speciality.

For the work reported here we have chosen three
very simple tasks that are reminiscent of some of the
Livermore loop cases but which can be expressed as
full code explicitly here. These are based on the no-
tion of generating and using pseudo random numbers
as part of a Monte Carlo or other stochastic calcula-
tion or simulation.

double sum = 0 . 0 ;
for ( int i =0; i<N; i++) sum += rng−>uniform ( ) ;

Figure 2: Simple benchmark timing generation of
summed random numbers.

The code listed in Figure 2 shows the first of these
three simple codes. It simply generates some number
N uniform random numbers, and sums them. Ex-
plicit summation is needed to ensure an overly smart
optimising compiler does not optimise out the con-
tents of the loop. We can make the random number
generator as high quality as we like and can concern

ourselves with details such as whether it is 32-bit,
or 64-bit or which algorithm is used. The generator
algorithm that is often used in quality Monte Carlo
work at the time of writing is the Mersenne-Twistor
algorithm(Matsumoto & Nishimura 1998). However
the RAN4 generator from the Numerical Recipes suite
(Press, Teukolsky, Vetterling & Flannery 2007)is just
as good for our purposes and is also easily imple-
mented. Other studies have considered random num-
ber generation for accelerators in more detail(Giles
2009), but the important notion for us is simply that
the algorithm be portable and implementable on all
platforms under consideration.

Our first code will give a measure of how well each
processing device performs at raw computation - al-
beit mixing floating point and integer arithmetic op-
erations as would a typical actual application code
such as a simulation.

double sum = 0 . 0 ;
double ∗ l i s t ; l i s t = new double [N ] ;
for ( int i =0; i<N; i++) l i s t [ i ]=rng−>uniform ( ) ;
for ( int i =0; i<N; i++) sum += l i s t [ i ] ;

Figure 3: Stored case.

The code listed in Figure 3 shows how the system’s
memory management system interacts with computa-
tion which still allowing vector and pipelining optimi-
sations to be introduced and exploited by the optimis-
ing compiler. The randomly generate d numbers are
stored in a large vector in order and then summed
in order in a separate loop. The memory access pre-
dictability should allow a compiler to exploit cache
management and pre-fetching and other associated
memory management optimisations. This pattern is
also fairly typical of a regular structured calculations
found in a simulation application.

double sum = 0 . 0 ;
int ∗ order ; order = new int [N ] ;
double ∗ l i s t ; l i s t = new double [N ] ;
for ( int i =0; i<N; i++) order [ i ] = i ;
for ( int i =0; i<N; i++){

int j = rng−>i n t64 ( ) % N;
int k = rng−>i n t64 ( ) % N;
int swap = order [ j ] ;
o rder [ j ] = order [ k ] ;
order [ k ] = swap ;

}
for ( int i =0; i<N; i++) l i s t [ i ] = rng−>uniform ( ) ;
for ( int i =0; i<N; i++) sum += l i s t [ order [ i ] ] ;

Figure 4: Indirectly addressed and shuffled stored
case.

The code listed in Figure 4 represents a more chal-
lenging set of tasks for devices. In this case the ran-
dom numbers are stored in the same linear list as
in case 2, but this time they are summed in a de-
liberately random order. This should deliberately
confound cache and memory management predictions
and pipelining and in some sense ought to represent
a worst case limit on the platform’s ability to do
memory-bound computations.

We need to chose the size N of these tasks with
care. In practice one finds that modern desktop and
blade systems at the time of writing will have clock
speeds of the order of a few GHz and affordable mem-
ory sizes of the order of at least a few GBytes - and in
some cases a few tens of GBytes. A size N of approx-
imately 108 − 109 ought to be practicable in terms of
tasks that can fit in memory and which take at least
of the order of seconds to complete.

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

23



A great deal has been reported in the liter-
ature concerning the proper use of clocks and
clock resolutions for computer benchmarking(Bailey,
Barscz, Barton, Browning, Carter, Dagum, Fa-
toohi, Fineberg, Frederickson, Lasinski, Schreiber, Si-
mon, Venkatakrishnan & Weeratunga 1994, Grove &
Coddington 2005). For our purposes here we want
to ensure the times taken are always sufficiently large
compared to clock granularities or uncertainties that
we can make fair comparisons between the different
platforms and draw fair conclusions therefrom.

While it is useful to consider absolute times to
take account of the different speed/price advantages
of individual systems, speedup measured in the clas-
sical manner is useful to compare the scalability of
the multi-threaded software benchmarks on the mix
of systems being compared.

Parallel speedup for n processors - or threads in
this present work - is usually defined as:

Sn =
T1
Tn

(1)

where T1 is the time taken for a single thread and
Tn the time taken for n such threads. It is impor-
tant to estimate the experimental uncertainty in this,
and we obtain this from experimental standard devi-
ations made in a set of times. Although a computer
ought to be a completely deterministic device, there
are a number of factors that can lead to a spread of
measurements.

Any modern computer system typically has a large
number of independent processes running to service
the operating system. While one can minimise the
number of unusual interrupts or events by temporar-
ily isolating computers from the network and limiting
user access for duration of benchmarking, inevitably
there are operating systems processes that wake up
and consume resources briefly. Generally experience
shows that these will contribute only a small uncer-
tainty to benchmark times providing suitable averag-
ing is done over for example 10 or more independent
runs.

Common sense indicates that clock accuracies are
limited and any timing measurement that is compa-
rable in size to CPU clock granularities will inevitably
be contaminated by context switching times. While
it is possible on some systems it is possible to obtain
very accurate clock timings, it is advantageous for
this sort of study to be able to use the portable and
readily available systems clock. This is not necessar-
ily more reliable than to a resolution of around mil-
liseconds. The benchmarks have therefore been tuned
so that the repeated number of operations performed
lead to times of the order of tens of seconds or higher.
These should therefore dominate any millisecond fluc-
tuations or indeed any process or OS daemon context
switching times of sub second scale. This means that
the measured times should be representative - on av-
erage - of the quantities of actual interest and that
conclusions can be safely drawn.

Using the usual first order calculus of derivatives
to study the propagation of uncertainties in 1, we
find that the uncertainty in speedup δSn is obtained
by adding the relative uncertainties in the times T1
and Tn.

δSn ≈
(
δT1
T1

+
δTn
Tn

)
Sn (2)

For our purposes here we simply use the standard
deviations in the distribution of measured values as
the uncertainty values for δT1 and δTn.

This means that all our data points are heavily
dependent upon a reliable and accurate measure of
T1 - the time for a single thread. In the results that
follow, we therefore average over around 10 individual
timing measurements to minimize this uncertainties
and which we plot as error bars on the diagrams.

4 Parallel Software

The results gathered on the Intel Xeon Phi are still
preliminary results and only explore one of the meth-
ods of parallel execution on this co-processor. The
benchmark tests executed on this device have been
implemented using Intel Threading Building Blocks
(TBB)(Intel 2010, Reinders 2007) and executed in na-
tive execution mode on the Xeon Phi. Other paral-
lel implementation options for the Xeon Phi include
pThreads (IEEE 1995), Intel Cilk threads (Blumofe,
Joerg, Kuszmaul, Leiserson, Randall & Zhou 1995)
and OpenMP (Chandra, Dagum, Kohr, Menon, May-
dan & McDonald 2001).

The native execution mode involves copying the
executable directly to the device. The other option
is the offload mode where a program executing on
the host CPU can offload execution onto the Xeon
Phi, however this can include additional overheads
for copying data. All code for the Xeon Phi has been
compiled using the Intel Compiler and is running on
Centos 6.4. A code listing showing the simple test
case implemented using TBB can be seen in Listing 1,
this code can be executed directly on the Xeon Phi.

Listing 1: Intel Threading Building Blocks Implemen-
tation of the simple test case.

double s imple ( ) {
double t o t a l = 0 . 0 ;
p a r a l l e l f o r ( b locked range<unsigned long>(0 , N) ,

[ ] ( const blocked range<unsigned long> &r ) {
RNG rng ;
double sub to ta l = 0 ;
unsigned long i ;
for ( i = r . begin ( ) ; i != r . end ( ) ; ++i ) {

sub to ta l += rng . uniform ( ) ;
} ;
tbb : : spin mutex : : s coped lock lock ( add mutex ) ;
t o t a l += subto ta l ;

} ) ;
return t o t a l ;

}

The NVidia GPU benchmarks have been tested
on an NVidia GTX Titan and compiled using gcc 4.7
and CUDA 5.5. There is only one execution mode
for GPUs which does require memory copies between
the host and device. However, these memory copies
have not been included in the results to ensure a fair
comparison between the Xeon Phi and the NVidia
GPU. The CUDA kernel for computing the simple
test case on the GPU is shown in Listing 2.

Listing 2: CUDA kernel implementation of the simple
test case.

g l o b a l void s imple (RNG ∗r , double ∗ to ta l , int N) {
int i = ( ( blockIdx . x ∗ blockDim . x)+threadIdx . x ) ;
RNG rng = r [ i ] ;
double sub to ta l = 0 . 0 ;
for ( int n = 0 ; n < N; n++) {

sub to ta l += uniform ( rng ) ;
}
atomicAdd ( to ta l , sub to ta l ) ;

}

CRPIT Volume 152 - Parallel and Distributed Computing 2014

24



CPU CPUs Cores L2 Cache CPU Clock Operating
Model Platform (MBytes) (GHz) System
SMD Blade Intel Xeon 1x8 Core 1 8 20 3.10 Ubuntu
SMD Blade AMD Bulldozer 2x16 Core 2 32 2 2.20 Ubuntu
SMD Blade Intel Xeon Phi 5110P 1 60 0.5 1.05 CentOS
SMD Blade GTX Titan 1 2688 1.5 0.88 Ubuntu

Table 1: CPU, GPU and co-processor properties for the systems used for benchmarking.

5 Selected Performance Results

The benchmarks have been executed on each of the
different test machines for sizes of N = 108..1.5x109.
Because of memory limitations, not all of the comput-
ing platforms tested were able to complete the bench-
marks for all system sizes. The memory requirements
have the most noticeable impact on the Xeon Phi and
the Kepler GPU. The Xeon Phi has 8GB of memory
but some of this is required to run the operating sys-
tem on the device and the NVidia GTX Titan has
only 6GB of memory. The CPU machines had no
such problems with available memory ranging from
16GB to 128GB.

Figure 5: Xeon 8-core 3.10 GHz Blade

Figure 5 shows the benchmark results executed on
a single core of a 3.10 GHz Intel Xeon. The results are
largely as expected, the indirect addressing (with and
without optimisations) have the slowest performance
because of the random access restricting the CPU’s
ability to cache memory access. It also shows the lim-
itations of the timing which cannot accurate measure
the time taken for the optimised simple benchmark
which is not restricted by memory access.

Figure 6: Bulldozer 2.20 GHz Blade

Figure 6 shows the performance of the same bench-
marks executed on a single core of an 2.20 GHz AMD
Bulldozer. This plot shows similar trends to the Intel
Xeon from Figure 5. Comparing these two plots it
can be seen that the performance of the Bulldozer is
measurably lower than the Intel Xeon, not surprising
given the difference in clock speed.

Figure 7: Xeon Phi in native execution mode.

Figure 7 shows the TBB implementations of these
benchmarks executed on the Intel Xeon Phi. The full
performance plots for the stored and indirect bench-
marks are not available due to the memory limitations
of the Xeon Phi. This implementation is executed on
all available processors of the Xeon Phi. It should
be noted that this implementation does not explicitly
make use of the vector processing units available in
the Xeon Phi cores.

Figure 8: Xeon Blade equipped with GTX Titan.

Figure 8 shows the benchmarks executed on an
Nvidia GTX Titan. The GPU can only test a limited
set of benchmarks due to the memory constraints of
the device. As with previous plots the performance of
the simple benchmark is hard to measure due to the
very short execution time. The largest benchmark at
1.5x109 can be computed on the GTX Titan in less
than 0.2 seconds.

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

25



While the Intel Xeon and AMD Bulldozer show
similar trends in performance, the single Xeon core
completes the benchmark tests between 1.5x faster
(simple case) to 2.5x faster (indirect and stored case).
Compared to the single AMD Bulldozer core the Xeon
Phi (using all 60 physical cores) can compute the
benchmarks between 3x faster (simple case) to 20x
faster (indirect case). Overall the GTX Titan pro-
vides the best performance for the benchmarks com-
pleting the simple case 35x faster than a single Bull-
dozer core and 60x faster for the stored and indirect
test cases. Although the GPU and Xeon Phi provide
performance improvements it should be remembered
that they are limited to the size of system they can
compute for the stored and indirect test cases due to
the limited memory available on the devices.

Table 2: Comparison of price and benchmark results
(generating 5x109 random numbers). Prices are ap-
proximated from online information 2013.

Platform Price Simple Stored Indirect
(NZD)

Bulldozer ≈ $950 2s 11s 132s
Xeon ≈ $2000 1s 5s 49s

Xeon Phi ≈ $3400 1.4s 3.3s 6.7s
GTX Titan ≈ $1800 0.05s 0.2s 2.2s

6 Developmental Directions

We have managed to find a benchmark algorithm and
set of sizes that can practically be run on all the
platforms we have discussed. There are of course
many possible ways to approach the parallelisation
of even these simple loops however. We have focused
on those that ought to have favoured the individual
platforms - using Intel proprietary compiler and tools
on the Xeon Phi and NVidia’s CUDA and associated
tools on the Kepler GPU. The GNU compiler set and
its virtual register approach to compiler level opti-
misation still delivers good performance on a range
of conventional CPU architectures. Various thread-
ing libraries including pThreads and Intel’s Thread
Building Blocks can also be used.

Our overall impression of these devices and tools
is that the automated parallelism problem is still far
from being solved. NVidia’s Kepler GPUs and its
likely successors do well because they limit the scope
of the parallelisation problem that they commit to
tackle. GPUs are extremely good at fine grained data
parallel applications and algorithms and although the
number of multi processors and floating point units
is improving the memory communications structure
will still favour problems of a data-parallel nature.
GPUs do well precisely because programmers know
what they are good at, they are not trying to support
all parallel models and tools exist to optimise against
their strengths.

Multiple cores in conventional CPUs offer con-
siderable power for multi threading application pro-
grams. The performance attainable with Intel’s
hyper-threading architecture on 6-core or 8-core
Xeons is impressive and exploitable at the application
level. AMD’s Bulldozer processor with its 16-cores is
also impressive and although it does not match the
Xeon performance it perhaps comes close on price
performance.

The Intel Xeon Phi many-integrated core (MIC) is
a valiant step in the right direction, but we and others
do seem to be failing to make it deliver against its po-

Figure 9: Development directions - multi-core CPU
and parallel accelerator designs converging on an in-
tegrated design.

tential. Perhaps its simply offers just to many cores
(circa 60) against the communications and memory
support infrastructure that comes with it at present?
It certainly offers some interesting speed ups but
nothing close to what one might hope from 60 sub-
stantive Knights Corner cores. We found that it was
very difficult to tie together all the necessary soft-
ware technologies to program it. NVidia’s CUDA
ecosystem is not trivial to program either but does
deliver significantly more worthwhile performance. It
is not an easy matter to quantify programmer ef-
fort against attainable performance but in the present
world where generally programmers are a lot more ex-
pensive than raw hardware this is an important con-
sideration. It is our opinion that Intel or its sup-
port community will have to put a lot more effort
into tools, example codes, and other software ecosys-
tem support before the Xeon Phi accelerator and it s
hoped for successors are more widely adopted.

We do hope this will happen as it seems that the
general development of accelerators will be an impor-
tant part of parallel computing and the battle against
heat density and chip packaging limitations for some
time to come.

Figure 9 shows how different vendors are ap-
proaching the problem of introducing exploitable
cores from different directions. NVidia’s approach
has been based on introducing a large number of
lightweight cores capable of supporting fine-grained
data-parallelism. Further acceleration may come by
incorporating additional controllers and based on
ARM CPU architectural units. Intel’s traditional ap-
proach has been to increase the number of conven-
tional CPU cores available within the CPU itself and
is now accelerating these even further by adding even
more accelerator cores in the form of devices like the
MIC.

An important notion in parallel computing is and
ha s been for some time that of “balance” in terms
of the ratios between raw computational performance
(Gigaflops) and memory size and indeed access rates
to keep processors fed. Looking back over the last
twenty years, platforms that have a ratio of around
1 MFlops performance to 1MByte storage were the
norm at the end of the 1980s. This ratio has con-
tinued approximately with present desktops offering
approximately similar ratios. This indicates that our
benchmark targets roughly the right range and that
this is a good indicative range of the performance
regime that CPUs and accelerated CPUs must tar-
get.

While applications vary and can target all as-
pects of the hierarchy discussed in Section 1, it seems
likely that vendors need to put more effort into tack-
ling the memory and communications support infras-
tructure if accelerator architectures based on conven-
tional CPU cores are to successfully counter other
approaches.

CRPIT Volume 152 - Parallel and Distributed Computing 2014

26



7 Summary & Conclusions

We have described the present state of the art in
terms of conventional multi-core CPUs and acceler-
ator devices and have listed typical numbers of cores,
clock rates and memory support and cache sizes. We
have experimented with specific instances of all these
devices and have attempted to assess their relative
strengths and weaknesses by a detailed benchmark-
ing exercise.

We formulated and have given code details of a
series of simple yet informative benchmark codes in
C that exercise both raw computational performance
as well as memory support structure and which use a
portable random number generator to allow a practi-
cable and fair comparison of all devices. We believe
this is the first time that a quantitative comparison
has been reported on all of these platforms together.

We have found that while CPUs using conven-
tional cores are easily programmed an indeed yield
an impressive absolute and speedup performance, the
fine grained GPU accelerator yields the best speedup.
It also yields the best price performance too. The In-
tel Xeon Phi accelerator is an exciting development
and it typifies Intel’s alternative approach to NVidia.
However despite our expending around an order of
magnitude more programming effort to try to obtain
good performance from the Xeon Phi, it has not yet
delivered its hoped for performance.

We believe it is important to tackle the many cored
problem from this direction, as Intel is supporting,
but that likely more effort needs to be expended on
communications and memory support infrastructure
to ensure the many cores can be practicably exploited
at the application level.

There is scope for combining multiple accelerator
devices together to service a single application. Use
of a GPU and Xeon Phi together accelerating a single
host CPU is technically feasible and may yield some
interesting insights on balance, device specialisation
and the future potential for hybrid systems.

Our benchmarks reported here are simplistic - de-
liberately so to ensure all platforms and their associ-
ated optimisation tools had a fair chance. There is
therefore scope for a richer set of benchmark tests -
particularly those exercising more complex commu-
nications patterns and commonly used data struc-
tures and algorithms including linear algebra oper-
ations but also regular meshes and irregular graph
network problems.

Finally, we believe the accelerator approach will
continue to be an important one, and that both the
intel approach of integrating together conventional
CPU cores and the NVidia hierarchical approach to
fine grained cores are both necessary for driving de-
velopment of the parallel software ecosystem. When
these two approaches meet together in terms of core
numbers is likely to be an interesting time for paral-
lelism.

References

Bailey, D., Barscz, E., Barton, J., Browning, D., Carter, R.,
Dagum, L., Fatoohi, R., Fineberg, S., Frederickson, P.,
Lasinski, T., Schreiber, R., Simon, H., Venkatakrishnan,
V. & Weeratunga, S. (1994), The nas parallel bench-
marks, Technical Report RNR-94-007, NASA Ames Re-
search Center, Moffett Field, CA, USA.

Bischof, C. H. & Dongarra, J. J. (1989), A linear algebra li-
brary for high-performance computers, in G. F. Carey,

ed., ‘Parallel Supercomputing: Methods, Algorithms and
Applications’, Wiley, chapter 4, pp. 45–55.

Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall,
K. & Zhou, Y. (1995), Cilk: An efficient multithreaded
runtime system, in ‘Symp. Principles and Practice of Par-
allel Programming’, ACM, pp. 207–216.

Butler, M., Barnes, L., Sarma, D. D. & Gelinas, B. (2011),
‘Bulldozer: An approach to multithreaded compute per-
formance’, IEEE Micro 31(2), 6–15.

Cantrill, B. (2006), ‘Hidden in plain sight’, System Perfor-
mance 4, 26–36.

Chandra, R., Dagum, L., Kohr, D., Menon, R., Maydan, D. &
McDonald, J. (2001), Parallel Programming in OpenMP,
Morgan Kaufmann Publishers Inc.

Demmel, J., Dongarra, J., DuCroz, J., GreenBaum, A., Ham-
marling, S. & Sorensen, D. (1988), A project for develop-
ing a linear algebra library for high-performance comput-
ers. ANL-MCS-P37-1288 Preprint.

Giles, M. (2009), Notes on CUDA implementation of random
number genertors. Oxford University.

Grove, D. A. & Coddington, P. D. (2005), ‘Communication
benchmarking and performance modelling of mpi pro-
grams on cluster computers’, J. Supercomput. 34(2), 201–
217.

Hawick, K. A. & Playne, D. P. (2013), Parallel algorithms for
hybrid multi-core cpu-gpu implementations of component
labelling in critical phase models, in ‘Proc. Int. Conf. on
Parallel and Distributed Processing Techniques and Ap-
plications (PDPTA’13)’, number CSTN-177, WorldComp,
Las Vegas, USA, p. PDP3297.

IEEE (1995), IEEE Std. 1003.1c-1995 thread extensions.

Intel (2010), Intel(R) Threading Building Blocks Reference
Manual, Intel.

Intel (2013), Intel 64 and ia-32 architectures optimization ref-
erence manual, Technical report, Intel.
URL: http://www.intel.com/

Kleidermacher, D. N. (2008), ‘Multicore software development:
Fact and fiction’, Embedded Systems Design Novem-
ber, 1–5.

Knauerhase, R., Cledat, R. & Teller, J. (2012), For extreme
parallelism, your os is sooooo last-millennium, in ‘Proc.
4th Usenix Conf. on Hot Topics in Parallelism (Hot-
Par’12)’.

Leist, A., Playne, D. P. & Hawick, K. A. (2009), ‘Exploit-
ing Graphical Processing Units for Data-Parallel Scientific
Applications’, Concurrency and Computation: Practice
and Experience 21(18), 2400–2437. CSTN-065.

Matsumoto, M. & Nishimura, T. (1998), ‘Mersenne twistor: A
623-diminsionally equidistributed uniform pseudorandom
number generator’, ACM Transactions on Modeling and
Computer Simulation 8 No 1., 3–30.

McMahon, F. H. (1986), Livermore fortran kernels: A com-
puter test of numerical performance range, Technical Re-
port UCRL-53745, Lawrence Livermore National labora-
tory, Livermore, CA, USA. NTIS Report DE87009360.

NVIDIA (2012), NVIDIA’s Next Generation CUDA Compute
Architecture: Kepler GK110.
URL: http://www.nvidia.com/

Oskin, M. (2008), ‘The revolution inside the box’, Communi-
cations of the ACM 51(7), 70–78.

Patterson, D. A. & Hennessy, J. L. (2009), Computer Orga-
nization and Design - The Hardware/Software Interface,
number ISBN 978-0-12-374493-7, Morgan Kaufmann.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flan-
nery, B. P. (2007), Numerical Recipes - The Art of Scien-
tific Computing, third edn, Cambridge. ISBN 978-0-521-
88407-5.

Reinders, J. (2007), Intel Threading Building Blocks: outfitting
C++ for multi-core processor parallelism, number ISBN
978-0596514808, 1st edn, O’Reilly.

Saule, E., Kaya, K. & Catalyurek, U. V. (2013), Performance
evaluation of sparse matrix multiplication kernels on intel
xeon phi, arXiv 1302.1078v1, Ohio State University.

Sutter, H. & Larus, J. (2005), ‘Software and the concurrency
revolution’, Queue 3(7), 54–62.

TOP500.org (n.d.), ‘TOP 500 Supercomputer Sites’, http://
www.top500.org/. Last accessed November 2010.

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

27



CRPIT Volume 152 - Parallel and Distributed Computing 2014

28



Simulating and Benchmarking the Shallow-Water Fluid Dynamical
Equations on Multiple Graphical Processing Units

D.P. Playne K.A. Hawick M.G.B. Johnson

Computer Science, Institute of Natural and Mathematical Sciences
Massey University – Albany

North Shore 102-904, Auckland, New Zealand
Email: {d.p.playne, k.a.hawick, m.johnson}@massey.ac.nz

Tel: +64 9 414 0800 Fax: +64 9 441 8181

Abstract

The shallow-water model equations provide a sim-
ple yet realistic benchmark problem in computational
fluid dynamics (CFD) that can be implemented on a
variety of computational platforms. Graphical Pro-
cessing Units can be used to accelerate such prob-
lems either singly using a data parallel decomposi-
tional scheme or with multiple devices using a do-
main decompositional approach. We implement the
SW equations on a range of modern GPUs with both
parallel schemes and report on the typical perfor-
mance. We compare integer optimised GPUs and
very modern floating-point intensive GPU devices
such as NVidia’s Kepler K20X, and also investigate
different m-GPU communication methods for geomet-
ric decompositions. We give detailed performance re-
sults and a summary of the main parallelisation is-
sues.

Keywords: shallow water system; weather simulation;
climate simulation; parallel computing; single GPU;
multiple GPU.

1 Introduction

Computational Fluid dynamical algorithms(Tritton
1988, Griebel, Dornseifer & Neunhoeffer 1998) re-
main the central core needed for both numerical
weather prediction(Barry & Chorley 1989) and cli-
mate simulations(Hurrell, Meehl, Bader, Delworth,
Kirtman & Wielicki 2009). These problems have
been central to high performance computing since
its inception with the ENIAC and other supercom-
puters in the 1950s(Dyson 2012). Modern weather
forecast codes and climate analysis codes have be-
come very sophisticated in modern times, often run-
ning ensembles of systems to attain appropriate sta-
tistical accuracy. Nevertheless the core of such codes
is still a numerical integration of the atmosphere as
a fluid and sometimes also a coupled ocean model
system. In both cases the system is treated as a
fluid with coupled cells of material each approximat-
ing a spatial region of air or ocean(C.A.J.Fletcher
1991a, C.A.J.Fletcher 1991b). A great many differ-
ent numerical schemes have been employed in such
codes and it is quite difficult to implement a complete
such package as a benchmark(Bailey, Barscz, Barton,
Browning, Carter, Dagum, Fatoohi, Fineberg, Freder-

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at 12th Australasian Symposium on Parallel
and Distributed Computing (AusPDC2014), Auckland, New
Zealand. Conferences in Research and Practice in Information
Technology, Vol. 152. B. Javadi and S.K. Garg, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

Figure 1: Visualisation of waves in a Shallow Water
model simulation.

ickson, Lasinski, Schreiber, Simon, Venkatakrishnan
& Weeratunga 1994).

The shallow-water (SW) system of
equations(Randall 2006) model a greatly simpli-
fied such problem and provide a more practicable
benchmark algorithm and code that can be readily
ported across different computational platforms,
and most usefully for our work in this present
paper, the SW equations also lend themselves to a
range of different parallel decompositional schemes.
As the name suggests, the SW system models a
shallow fluid system that is somewhere between
two and three dimensional. A few simplified fluid
layers are used to approximate the bulk behaviour
and simplify the calculations. Although in such
simulations much of the details needed to study for
example turbulence(W.D.McComb 1990) are lost,
the SW model tends to work surprisingly well for
thin-layer fluids(Hawick 2011) such as the planetary
atmosphere or for certain shallow oceanic problems
such as particular bays(Bailey 2010, Martinez,
Campbell, Annable & Kiker 2008). Realistic short
to medium range weather models make intensive
use of initial condition values for the numerical
integration(Hawick 1991) based on observational
data form many sources such as satellites(Xiao, Zou,
Pndeca, Shapiro & Velden 2002). Climate codes
are more governed by statistical energy(Peixato
& H.Oort 1984) and system-wide coupling effects
and exhibit less memory concerning specific initial
condition details. Benchmarking and optimising the
performance of the data assimilation scheme(Hawick,
Bell, Dickinson, Surry & Wylie 1992) is a separable
problem however and we do not tackle it in this
present paper. Instead we focus on the computa-
tional integration(Playne & Hawick 2011) as typified
by the needs of a model such as the SW system.

Although sophisticated spectral techniques(Barros

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

29



& Kauranne 1991, Tett 1991) are increasingly be-
ing applied to weather and climate problems, the
classic parallel strategy for computational fluid
dynamics(Hawick, Bogucz, Degani, Fox & Robinson
1995) is that of a geometric data parallelism(Hawick
& Playne 2011), whereby the mesh points of the equa-
tions are spread geometrically across a set of proces-
sors or processing cores. This strategy is ideal for a
single Graphical Processing Unit (GPU) and mod-
ern GPUS(Leist, Playne & Hawick 2009) have an
impressively large number of such cores. However
not all such devices have the same degree of sup-
port for floating point calculations(Johnson, Playne
& Hawick 2013), and some devices that have many
cores have rather poorer FPU support of those cores.
There is therefore an important tradeoff space of FPU
support and number of cores and of course cost to be
considered.

Additionally, schemes like the SW model which in-
volves multiple stages of advection also offer a task
decompositional option(Vu, Cats & Wolters 2008)
whereby multiple GPUs are used to accelerate the
same CPU host processor in tackling different parts
of the numerical update. This is a particularly inter-
esting strategy that can make use of the modern GPU
capability of communicating data with one another
directly without passing communications through the
hosting CPU.

Modern multi-core processors and GPUs lend
themselves well to computationally intensive calcu-
lations of this sort(Schmidt, Berzins, Thornock, Saad
& Sutherland 2013). Many of the current Top 500
supercomputers in the world use GPUs to acceler-
ate individual nodes. The regime of multiple GPU
accelerators per node is however still not well ex-
plored. Computational Fluid Dynamics remains a
highly significant problem for real supercomputer
installations(Zaspel & Griebel 2012). CFD prob-
lems have also been formulated as lattice-gas and au-
tomaton model systems(Johnson, Playne & Hawick
2010, Lyes, Johnson & Hawick 2012). This approach
can make use of integer-optimised devices but in
this present paper we focus of traditional CFD so-
lutions using the solution of partial differential equa-
tions by numerical integration(Micikevicius 2009) and
floating-point intensive processing elements.

The SW system itself has been studied before for
many parallel platforms including a single GPU ac-
celerator per CPU(Vinas, Lobeiras, Fraguela, Arenaz,
Amor, Garcia, Castro & Doallo 2013). We however
are able to consider the tradeoff space for very recent
GPU models and also for multiple GPUs including the
GPU-GPU direct data communication capability. We
make use of NVidia’s Compute Unified Device Archi-
tecture (CUDA) software(NVI 2012) in this present
work. CUDA software can be run on a large range
of different GPU models and we report on a selection
of these along with discussion of the implications for
CFD simulation problems.

Our article is structured as follows: In Section 2
we summarise the Shallow Water model formulation
that we investigate. We describe our parallelisation
strategy for single and multiple GPUs in Section 4
and give some selected performance results for vari-
ous devices in Section 5. We give a discussion of the
results and offer some tentative conclusions in Sec-
tion 6.

2 Shallow Water Model Formulation

The Shallow Water equations (SW) are a set of par-
tial differential equations that can be derived from
the more general Navier-Stokes equations. In the SW
the horizontal length scale is considered to be much
greater than the vertical length scale and a hydro-
static pressure along the direction of gravity. The
vertical velocity can be removed from the Navier-
Stokes equations by integrating vertically which al-
lows a three-dimensional fluid problem to be turned
into a two-dimensional height-field problem (Muller,
Stam, James & Thurey 2008).

The SW describe two conditions of the conserva-
tion of mass and the conservation of momentum. This
is expressed as an advection-diffusion problem.

A shallow-water system can be represented by a
fluid height- and velocity-field.

∂h

∂t
= −h∇ · v − (∇h)v (1)

∂v

∂t
= g∇h− (∇v)v (2)

The fluid in this model is stored as a staggered grid
where the height variable h represents the height of
the fluid at the centre of each discrete cell. The hor-
izontal velocity (v) is represented by two variables
vx and vy which are the velocities on the edges of
the cell in the x- and y-dimensions respectively. This
staggered grid is shown in Figure 2 where the dots
represent the location of the height variable and the
lines represent the horizontal velocities in the x- and
y-dimensions. Staggered grids are commonly used for
fluid simulations as they avoid some of the instabili-
ties caused by a discrete co-located grid.

Figure 2: Staggered grid used to store the shallow
water system. The dots represent the location of the
height field points and while the vertical and horizon-
tal bars represent the velocity field points.

The method of simulating the SW used in this
project is based on the description in (Muller et al.
2008). This method uses an explicit time-integration
scheme to avoid the problem of solving a system of
linear equations. Updating the fluid involves two sep-
arate stages - first the fields are advected using the
velocity field and then the accelerations of the fields
are computed. This process is shown in Algorithm 1.

A semi-Lagrangian method is used to compute the
advection steps within the field. Essentially this in-
volves performing a backwards trace of an imaginary
particle at each lattice point. This must be performed
separately for each of the lattice points representing
the height and velocity fields. For each lattice point
the velocity field at that point is calculated. This may

CRPIT Volume 152 - Parallel and Distributed Computing 2014

30



Algorithm 1 Update algorithm for the SW model.

for All steps do
advect(h, v)
advect(vx, v)
advect(vy, v)
update(h, v)
update(vx, h)
update(vy, h)

end for

require interpolation of velocity variables due to the
staggered grid. This is illustrated in Figure 3.

Figure 3: Interpolation of the velocity field variables
for the three different lattice points - height (left), vx
(centre) and vy (right).

Once the appropriate velocity values have been in-
terpolated to give the velocity field at the desired
point in the grid, the velocity is used to trace an
imaginary particle backwards in time to advect the
field. Once the particle has been traced backwards
in time (see Equation 3), the value of the field must
be calculated at the exact point. This is performed
using bi-linear interpolation which is bounded by the
existing values of the field and helps to ensure stabil-
ity.

xt−4t = x− v4t (3)

After the advection steps have been completed the
fields are updated. The update of the height field de-
pends the divergence of the velocity fields and the ac-
celeration of the velocity fields is given by the gradient
of the fluid height (above 0). This total fluid height
depends on both the fluid height and the height of
the ground to correctly handle non-constant ground
planes.

The border conditions of the simulation are simple
reflecting boundaries. These boundaries can be im-
plemented by enforcing the condition that the velocity
across the border is zero (fluid cannot flow through
the wall) and mirroring the height of the fluid across
the boundary. The velocity along the direction of the
wall is unaffected by the boundary conditions and the
fluid can flow along the wall with no friction.

This is a brief outline of the updating process of a
simple shallow-water simulation based on the descrip-
tion in (Muller et al. 2008). This article considers how
such a simulation can be implemented on an m-GPU
(multi-GPU) system.

3 m-GPU Technology

Released late last year the Nvidia Tesla K20X is the
most powerful single-GPU released to date. This Ke-
pler architecture GPU contains 2688 CUDA cores,
6GB of GDDR ram and supports Dynamic Paral-
lelism and Hyper-Q. With a peak double precision
floating point performance of 1.31 TFLOP/s it is over
twice as fast as the previous generation Tesla M2090

(666.1 TFLOP/s) despite only having an additional
10 watts TDP.

The GPU in this device is the Kepler GK110
which contains a number of NVIDIA’s new genera-
tion Streaming Multiprocessor (SMX) units shown in
Figure 4. These SMX units contain a number of im-
provements over those in the GK104, most significant
for scientific applications is the additional double pre-
cision processing units. For reference the architecture
of the previous generation Streaming Multiprocessor
(SM) units in a Fermi GPU are shown in Figure 5.

Figure 4: Architecture of an SMX unit from a
GK110 GPU which powers cards such as the K20X
and the GeForce GTX Titan.

Figure 5: SM unit architecture from a Fermi archi-
tecture GPU in cards such as the GTX590.

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

31



Transfer Methods

There are two competitive options for data trans-
fer between devices in an m-GPU program. These are
Direct Transfer and Direct Access which are peer-to-
peer data transfer methods available with GPUDirect
2.0. These two methods require two GPUs of Fermi-
architecture or later with peer-to-peer memory access
enabled and both rely on Unified Virtual Address-
ing (UVA). UVA maintains a single address space for
all memory allocated on the host and on any GPU
devices. This allows any memory access or copy to
identify the memory location of a memory address
whether it is on the host or on a GPU.

Direct Transfer allows the host to initiate a
memory copy from a source the device memory of
one GPU to a destination in another device. A Direct
Transfer memory copy is faster than the old method of
memory transfer between devices which had to copy
the data into an area of host memory and then copy it
into the second device. Direct Transfer eliminates this
unnecessary additional memory transfer and the need
for a host memory buffer. This method of device-
device communication is shown in Figure 6.

Figure 6: Direct Transfer method of communication
where data is copied directly from the memory of one
device to another.

Direct Access eliminates the need for host ini-
tiated memory copies altogether by allowing threads
from one GPU to access memory on another GPU.
This Non-Uniform Memory Access (NUMA) is ex-
pected to be less efficient for transferring large con-
tiguous blocks of data between two GPU devices but
can have advantages for the transfer of border infor-
mation as the memory copies can be removed entirely.
This method of data access is shown in Figure 7.

Figure 7: Direct Access method of communication
where data stored in one device is read directly by a
thread from another device.

Unified Virtual Addressing (UVA) defines a
single address space in which all memory addresses
are defined for both the CPU and GPU memory. This
allows the physical location of a memory address to be
identified by the system. This feature is required for
Direct Access as if there was not a single address space
then the threads would not be able to identify which
device’s memory a value should be read from. Direct
Transfer does not require UVA but it does simplify
the cudaMemcpy calls for a Direct Transfer copy as the
programmer can simply specify two addresses and the
system can work out where those memory addresses
are stored. Previously the programmer had to use

cudaMemcpyPeer, specify the source and destination
addresses as well as the GPU devices they were stored
on.

4 GPU Implementation Method

Domain decomposition is used to split the simulation
of the Shallow Water model across multiple GPU de-
vices. In the case describe here where the system is
split between two GPU devices, each device is allo-
cated half of the system. The devices are responsible
for storing and updating their half of the system. The
system is split in the y-dimension because then the
bordering cells in the lattice are stored in contigu-
ous memory. It should be noted that splitting the
simulation across a different number of devices may
have other optimal decomposition methods, the op-
timal method to used will depend on the number of
devices and is not discussed further here.

During the updating of the system, the data on the
borders of each device’s domain must be exchanged in
order for the simulation to be correct. This exchange
of bordering information must be performed several
times during the update (see Algorithm 1). The ad-
vection of the fields is performed using the current
velocity field (Muller et al. 2008) and the new val-
ues computed for the borders of each domain must
exchanged. This exchange must also be performed
after the update of the height field (as it is required
for the update of the velocities) and finally after the
velocities have been updated. The bordering areas of
the two lattice domains are shown in Figure 8.

Figure 8: Bordering information that must be ex-
changed between the GPU devices.

Direct Transfer Implementation

The first implementation of the m-GPU shallow
water model uses the Direct Transfer method to ex-
change bordering information. Performing a direct
memory copy from one device to another is sim-
ple in the more recent version of CUDA. All that
is required is a simple cudaMemcpy call using the
cudaMemcpyDefault flag. Because the memory ad-
dresses are defined with Unified Virtual Addressing
(UVA), CUDA automatically works out where the
source and destination memory areas are stored and
copies the data between them. If these two areas are
in the device memory of two different GPUs it will
automatically use the Direct Transfer method.

Listing 1 shows a code snippet of the advection
stage of the SW simulation. The three fields h, vx
and vy are advected using the current velocity field
by each GPU device. The devices are synchronised
to ensure that the computation is completed before
the bordering information is exchanged which is then
performed by a series of call to cudaMemcpy.

CRPIT Volume 152 - Parallel and Distributed Computing 2014

32



Listing 1: Direct Transfer Implementation of the ad-
vection stage of the simulation. The three fields of the
simulation are numbered to show which device they
belong to - e.g. h1 is the height field on device 1, h2
is the height field on device 2.

//Advection
cudaSetDevice ( 0 ) ;
advectH <<< . . . >>>(vx1 , vy1 , h1 , . . . ) ;
advectVX <<< . . . >>>(vx1 , vy1 , . . . ) ;
advectVY <<< . . . >>>(vx1 , vy1 , . . . ) ;

cudaSetDevice ( 1 ) ;
advectH <<< . . . >>>(vx2 , vy2 , h2 , . . . ) ;
advectVX <<< . . . >>>(vx2 , vy2 , . . . ) ;
advectVY <<< . . . >>>(vx2 , vy2 , . . . ) ;

// Synchronise threads
cudaSetDevice ( 0 ) ;
cudaThreadSynchronize ( ) ;
cudaSetDevice ( 1 ) ;
cudaThreadSynchronize ( ) ;

//Exchange H
cudaMemcpy(&h1 [ Y2∗X] , &h2 [ Y2∗X] ,

X∗ s izeof ( r e a l ) , cudaMemcpyDefault ) ;
cudaMemcpy(&h2 [ ( Y2−1)∗X] , &h1 [ ( Y2−1)∗X] ,

X∗ s izeof ( r e a l ) , cudaMemcpyDefault ) ;

//Exchange VX
cudaMemcpy(&vx1 [ ( Y2)∗X1 ] , &vx2 [ ( Y2)∗X1 ] ,

X1∗ s izeof ( r e a l ) , cudaMemcpyDefault ) ;
cudaMemcpy(&vx2 [ ( Y2−1)∗X1 ] , &vx1 [ ( Y2−1)∗X1 ] ,

X1∗ s izeof ( r e a l ) , cudaMemcpyDefault ) ;

//Exchange VY
cudaMemcpy(&vy1 [ ( Y2)∗X] , &vy2 [ ( Y2)∗X] ,

X∗ s izeof ( r e a l ) , cudaMemcpyDefault ) ;
cudaMemcpy(&vy2 [ ( Y2−1)∗X] , &vy1 [ ( Y2−1)∗X] ,

X∗ s izeof ( r e a l ) , cudaMemcpyDefault ) ;

The disadvantage of the Direct Transfer method
is that the GPU devices will be idle during the mem-
ory transfer. Unlike the copy through host, CUDA
does not currently support concurrent computation
and communication for peer-to-peer memory trans-
fer.

Direct Access Implementation

The Direct Access method has no need for any
calls to cudaMemcpy as any kernel that requires data
stored in the other GPU device’s memory can simply
read it. This does require each thread to have pointers
to the fields on both GPUs. Using UVA, CUDA can
automatically work out where the memory is stored
and each thread will either read the value straight
from device memory or read it from the other device
using Direct Access across the PCIe bus. This has
been implemented in the simulation by using a simple
if statement to read the field value from the array
stored on the same or other GPU.

This is implemented in all of the kernels but the
height advection kernel is shown as an example in
Listing 2. This kernel is the same for both GPU de-
vices and simple updates on half of the field as deter-
mined by y and y max. If any address has a y index
of less than Y2 the thread will read the value from the
array on the first device, if it is greater than or equal
to Y2 it will be read from the second device. This
address comparison only needs to be performed when
neighbouring values are read as a thread will never
be launched on one GPU to process a cell stored on
the other device.

Listing 2: Direct Access Kernel Implementation.

g l o b a l void advectH ( r e a l ∗h1 1 , r e a l ∗h1 2 ,
r e a l ∗vx 1 , r e a l ∗vx 2 ,
r e a l ∗vy 1 , r e a l ∗vy 2 ,
r e a l ∗h2 , int y ,
int y max ) {

int i y = ( blockIdx . y ∗ blockDim . y ) +
threadIdx . y + y ;

int i x = ( blockIdx . x ∗ blockDim . x ) +
threadIdx . x ;

i f ( i y < y max ) {
int ym1 = max( iy − 1 , 0 ) ;
int xm1 = max( ix − 1 , 0 ) ;
int xp1 = min ( ix + 1 , X1−1);
int yp1 = min ( iy + 1 , Y1−1);

r e a l vx yx = ( iy < Y2) ?
vx 1 [ i y ∗X1+ ix ] : vx 2 [ i y ∗X1+ ix ] ;

r e a l vx yxp1 = ( iy < Y2) ?
vx 1 [ i y ∗X1+xp1 ] : vx 2 [ i y ∗X1+xp1 ] ;

r e a l vy yx = ( iy < Y2) ?
vy 1 [ i y ∗X+ix ] : vy 2 [ i y ∗X+ix ] ;

r e a l vy yp1x = ( yp1 < Y2) ?
vy 1 [ yp1∗X+ix ] : vy 2 [ yp1∗X+ix ] ;

r e a l ax = ix −(( vx yx+vx yxp1 ) / 2 . 0 )∗ dt ;
r e a l ay = iy −(( vy yx+vy yp1x ) / 2 . 0 )∗ dt ;

int nx = f l o o r ( ax ) ;
int ny = f l o o r ( ay ) ;

ax = ax − nx ;
ay = ay − ny ;

xp1 = min ( nx+1, X−1);
yp1 = min ( ny+1, Y−1);

r e a l h yx = ( ny < Y2) ?
h1 1 [ ny∗X +nx ] : h1 2 [ ny∗X +nx ] ;

r e a l h yxp1 = ( ny < Y2) ?
h1 1 [ ny∗X +xp1 ] : h1 2 [ ny∗X +xp1 ] ;

r e a l h yp1x = ( yp1 < Y2) ?
h1 1 [ yp1∗X+nx ] : h1 2 [ yp1∗X+nx ] ;

r e a l h yp1xp1 = ( yp1 < Y2) ?
h1 1 [ yp1∗X+xp1 ] : h1 2 [ yp1∗X+xp1 ] ;

h2 [ i y ∗X + ix ] = h yx ∗(1.0−ax )∗(1.0− ay)+
h yxp1 ∗( ax )∗(1.0− ay)+
h yp1x ∗(1.0−ax )∗ ( ay)+
h yp1xp1 ∗( ax )∗ ( ay ) ;

}
}

The performance of both these implementations
are compared to each other and to a single-GPU im-
plementation of the same simulation.

5 Performance Results

These two m-GPU implementations have been tested
on several different m-GPU systems with different
generations of GPU device. The GPUs tested are
the Fermi architecture GeForce GTX590 and the Ke-
pler architecture GTX690 and two GTX780s. In
addition to these GeForce cards the simulations are
tested on two Kepler architecture Tesla compute card
K20Xs. These systems are running CUDA version 5.5
which supports NVIDIA GPUDirect 2.0, the technol-
ogy that provides the Direct Transfer and Direct Ac-
cess methods.

The implementations have been tested for a range
of system sizes from 642 to 81922 (GPU device mem-
ory allowing). These experiments compare both the
computational performance of the different GPU de-
vices as well as their support for device-device com-

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

33



Figure 9: Performance results of the m-GPU shallow water simulations for system sizes from 642 to 81922 on
four m-GPU systems - GTX590, GTX690, GTX780 and K20X.

Figure 10: Performance results of the m-GPU shallow water simulations using Direct Access (DA) and Direct
Transfer (DT) on 2x K20Xs compared with a single GPU simulation on a K20X. The results are shown in ln-ln
scale.

CRPIT Volume 152 - Parallel and Distributed Computing 2014

34



munication. It is worth noting that the Tesla K20X
and the GeForce GTX780 devices must communicate
through the PCIe bus as the GPUs are in two sepa-
rate cards while the GTX590 and GTX690 are both
dual-GPU cards.

It can be seen from these results that (as is ex-
pected) the Tesla K20X compute cards easily provide
the best performance. In fact the SW simulations
running on a single K20X are only slightly slower than
the same simulation running on two GTX780 devices.

One unusual result is the performance of the
GTX590 devices which outperform the GTX690 and
compete with the GTX Titan systems in both the
single- and multi-GPU implementation. Given the
nature of the floating-point based computation of the
SW model it is not unexpected that the GTX590
may outperform the GTX690. The Fermi architec-
ture GPUs have a significantly different architecture
with more multiprocessors but only 32 cores per mul-
tiprocessor. In previous research it has been found
that Fermi-architecture GPUs can outperform equiv-
alence Kepler architecture GPUs for some floating-
point processing problems (Johnson et al. 2013).

The performance results of the single-GPU and
two m-GPU implementations of the SW model run-
ning on two K20X devices are shown in Figure 10.
On this scale it is easier to see the difference between
the implementations across the different system sizes.
Similar relative performance is observed for all the m-
GPU systems tested so only the results for the K20X
are presented to make the graph easier to read.

Figure 10 show that the single-GPU implementa-
tion is the fastest for very small simulations (642 -
1922) as these small systems cannot use the full com-
putational power of a single-GPU let alone two. As
the system sizes increases the speedup from using two
GPU devices approaches the optimal 2x.

The Direct Access implementation provides the
best performance of the two m-GPU implementations
and provides a noticeable speedup over the Direct
Transfer method from 2x for system size of 642 to
1.2x at 10242. For systems larger this the perfor-
mance of the two implementations becomes almost
indistinguishable but the Direct Access method never
imposes a performance penalty.

Table 1: Current prices (estimated from 2013 online
information) of the evaluated graphics cards and their
relative performance.

Model Price Speedup
(NZD) (vs 1x GTX590)

GTX590 ≈ $1, 200 1x
GTX590 (2x GPU) ≈ $1, 200 1.92x
GTX690 ≈ $1, 400 0.74x
GTX690 (2x GPU) ≈ $1, 400 1.40x
GTX Titan ≈ $1, 800 0.98x
GTX Titan x2 ≈ $3, 600 1.86x
K20X ≈ $4, 500 1.71x
K20X x2 ≈ $9, 000 3.38x

6 Discussion & Conclusions

We have described how a simulation of a shallow-
water model can be implemented on a multi-GPU
system using domain decomposition and two meth-
ods device-device communication. These implemen-
tations have been tested on several different GPU ar-

Figure 11: A series of images showing the time
evolution of a shallow-water simulation computed on
an m-GPU system. The system is initialised with a
Gaussian curve at the centre.

chitectures to compare performance across recent de-
vices.

The comparison of the different generation GPU
devices has revealed the unexpected result that
the older generation Fermi-architecture GTX590 can
offer better performance than the newer Kepler-
architecture equivalent card, the GTX690. Although
the GTX690 contains many more cores than the
GTX590, the configuration of the Kepler GK104 SMX
units are not well suited to the memory and floating-
point intensive kernels required by the shallow water
model. This result was shown in both the single- and
multi-GPU implementations. Given the relatively low
price of the GTX 590 it shows that more expensive
cards do not necessarily provide better CUDA perfor-
mance.

Another surprising result of these experiments is
the measured difference in performance between the
GTX Titan and the K20X. Both of these cards should
contain the same GK110 GPUs yet show a significant
difference in performance. There is no clear reason
for the performance difference as this simulation does
not make use of the extra features enabled only in the
K20X.

All the m-GPU capabilities devices tested show
similar scaling behaviour with the Direct Access
method providing a performance benefit for smaller

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

35



systems over the Direct Transfer method. The per-
formance of these two implementation converges as
the system size grows beyond 10242. At these larger
system sizes the performance of both methods ap-
proaches the optimal 2x speedup over the single-GPU
implementation.

Based on these findings we conclude that both
methods are suitable for m-GPU implementations of
this type of simulation using domain decomposition
as they both offer similar performance for the large
systems sizes m-GPU implementations would usually
be used for. However, as the Direct Access method of-
fers better performance for smaller systems and does
not add significantly to the code complexity we find
it to be the better method of device-device commu-
nication for this type of problem on both Fermi- and
Kepler-architecture GPU devices.

Future work includes investigation of the perfor-
mance difference between the GTX Titan and the
K20X and an extension of this work to more GPU
devices hosted in the same machine as well as GPU-
accelerated compute clusters.

References

Bailey, C. L. (2010), Mathematical modelling of shallow water
flows with application to Moreton Bay, Brisbane, PhD
thesis, Loughborough University.

Bailey, D., Barscz, E., Barton, J., Browning, D., Carter, R.,
Dagum, L., Fatoohi, R., Fineberg, S., Frederickson, P.,
Lasinski, T., Schreiber, R., Simon, H., Venkatakrishnan,
V. & Weeratunga, S. (1994), The nas parallel bench-
marks, Technical Report RNR-94-007, NASA Ames Re-
search Center, Moffett Field, CA, USA.

Barros, S. R. M. & Kauranne, T. (1991), On the paralleliza-
tion of global spectral weather models. ECMWF preprint,
submitted to Parallel Computing.

Barry, R. C. & Chorley, R. J. (1989), Atmosphere, weather and
climate, 5 edn, Routledge.

C.A.J.Fletcher (1991a), Computational Techniques for Fluid
Dynamics, Vol. 1, 2nd edn, Springer-Verlag. Fundamental
and General Techniques.

C.A.J.Fletcher (1991b), Computational Techniques for Fluid
Dynamics, Vol. 2, 2nd edn, Springer-Verlag. Specific
Techniques for Different Flow Categories.

Dyson, G. (2012), Turing’s Cathedral: The Origins of the Dig-
ital Universe, Vintage. ISBN: 978-1400075997.

Griebel, M., Dornseifer, T. & Neunhoeffer, T. (1998), Numer-
ical Simulation in Fluid Dynamics A Practical Introduc-
tion, number ISBN 0-89871-398-6, SIAM.

Hawick, K. (2011), Visualising multi-phase lattice gas fluid
layering simulations, in ‘Proc. International Conference
on Modeling, Simulation and Visualization Methods
(MSV’11)’, CSREA, Las Vegas, USA, pp. 3–9.

Hawick, K. A. (1991), Unified Weath/Climate Model Paral-
lel Implementation Feasibility Study, In confidence, Edin-
burgh Parallel Computing Centre, Edinburgh University,
EH9 3JZ, Scotland UK.

Hawick, K. A., Bell, R. S., Dickinson, A., Surry, P. D. &
Wylie, B. J. N. (1992), Parallelisation of the unified model
data assimilation scheme, in ‘Proc. Fifth ECMWF Work-
shop on Use of Parallel Processors in Meteorology’, Eu-
ropean Centre for Medium Range Weather Forecasting
(ECMWF), Reading.

Hawick, K. A., Bogucz, E. A., Degani, A. T., Fox, G. C. &
Robinson, G. (1995), Computational Fluid Dynamics Al-
gorithms in High-Performance Fortran, in ‘Proc. AIAA
25th Computational Fluid Dynamics Conf’.

Hawick, K. A. & Playne, D. P. (2011), ‘Hypercubic Storage
Layout and Transforms in Arbitrary Dimensions using
GPUs and CUDA’, Concurrency and Computation: Prac-
tice and Experience 23(10), 1027–1050.

Hurrell, J., Meehl, G. A., Bader, D., Delworth, T. L., Kirtman,
B. & Wielicki, B. (2009), ‘A unified modeling approach
to climate system prediction’, Bull. Amer. Meteorological
Soc. December, 1819–1832.

Johnson, M. G. B., Playne, D. P. & Hawick, K. A. (2010),
Data-parallelism and gpus for lattice gas fluid simu-
lations, in ‘Proc. International Conference on Parallel
and Distributed Processing Techniques and Applications
(PDPTA’10)’, CSREA, Las Vegas, USA, pp. 210–216.
PDP4521.

Johnson, M. G. B., Playne, D. P. & Hawick, K. A. (2013), Per-
formance tradeoff spectrum of integer and floating point
applications kernels on various gpus, in ‘Proc. 13th In-
ternational Conference on Computer Design (CDES’13)’,
number CSTN-180, WorldComp, p. CDE4086.

Leist, A., Playne, D. P. & Hawick, K. A. (2009), ‘Exploit-
ing Graphical Processing Units for Data-Parallel Scientific
Applications’, Concurrency and Computation: Practice
and Experience 21(18), 2400–2437. CSTN-065.

Lyes, T. S., Johnson, M. G. B. & Hawick, K. A. (2012), Visual
simulation of a multi-species coloured lattice gas model,
in ‘Proc. Int. Conf. on Scientific Computing (CSC’12)’,
CSREA, Las Vegas, USA, pp. 115–124.

Martinez, C. J., Campbell, K. L., Annable, M. D. & Kiker,
G. A. (2008), ‘An object-oriented hydrologic model for
humid, shallow water-table environments’, Journal of Hy-
drology 351, 368–381.

Micikevicius, P. (2009), 3D finite difference computation on
GPUs using CUDA, in ‘GPGPU-2: Proceedings of 2nd
Workshop on General Purpose Processing on Graphics
Processing Units’, ACM, New York, NY, USA, pp. 79–
84.

Muller, M., Stam, J., James, D. & Thurey, N. (2008), Real time
physics class notes, Technical report, NVIDIA. Chapter
11 - Shallow Water Equations.

NVI (2012), CUDA C Programming Guide, 5.0 edn.

Peixato, J. P. & H.Oort, A. (1984), ‘Physics of Climate’,
Rev.Mod.Phys. 56(3), 365–429.

Playne, D. P. & Hawick, K. A. (2011), ‘Comparison of GPU Ar-
chitectures for Asynchronous Communication with Finite-
Differencing Applications’, Concurrency and Computa-
tion: Practice and Experience (CCPE) Online, 1–11.
URL: http://onlinelibrary.wiley.com/doi

Randall, D. A. (2006), The shallow water equations, Technical
report, Atmospheric Science, Colorado State University,
Fort Collins, Colorado, USA.

Schmidt, J., Berzins, M., Thornock, J., Saad, T. & Suther-
land, J. (2013), Large scale parallel solution of incom-
pressible flow problems using uintah and hypre, in ‘IEEE
International Symposium on Cluster Computing and the
Grid’, IEEE Computer Society, Los Alamitos, CA, USA,
pp. 458–465. ISBN 978-1-4673-6465-2.

Tett, S. F. (1991), A massively parallel algorithm for the spec-
tral method. UKMO Preprint.

Tritton, D. (1988), Physical Fluid Dynamics, 2 edn, Clarendon
Press.

Vinas, M., Lobeiras, J., Fraguela, B. B., Arenaz, M., Amor,
M., Garcia, J. A., Castro, M. J. & Doallo, R. (2013),
‘A multi-gpu shallow-water simulation with transport of
contaminants’, Concurrency and Computation: Practice
and Experience 25, 1153–1169.

Vu, V. T., Cats, G. & Wolters, L. (2008), Asynchronous Com-
munication in the HIRLAM Weather Forecast Model, in
‘Proc. 14th Annual Conference of the Advanced School
for Computing and Imaging (ASCI)’.

W.D.McComb (1990), The Physics of Fluid Turbulence,
Clarendon Press.

Xiao, Q., Zou, X., Pndeca, M., Shapiro, M. & Velden, C.
(2002), ‘Impact of gms-5 and goes-9 satellite-derived
winds on the prediction of a norpex extratropical cyclone’,
Monthly Weather Review 130(3), 507–528.
URL: http://journals.ametsoc.org/toc/mwre/130/3

Zaspel, P. & Griebel, M. (2012), ‘Solving incompressible two-
phase flows on multi-gpu clusters’, Computers & Fluids
In press, 1–9.

CRPIT Volume 152 - Parallel and Distributed Computing 2014

36



�� � �

��

�

� � �

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

37



CRPIT Volume 152 - Parallel and Distributed Computing 2014

38



���� � ��	 
 ���� 
 ���� 
 
��� � ���� 
 ������ � ����

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

39



����������������� �
� !"#

�$%&'()(%*
+ 
 �,�- � .���/�'��0 
 1 
 2�/,34

�������56+���� � ���7�/8 � ���� � ���7�/9

����������������� �
2:;<=

2>?@'ABA?C

+ 
 �:CD � .���7�/8 � ���7�/94

CRPIT Volume 152 - Parallel and Distributed Computing 2014

40



Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

41



CRPIT Volume 152 - Parallel and Distributed Computing 2014

42



Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

43



CRPIT Volume 152 - Parallel and Distributed Computing 2014

44



Efficient Parallel Algorithms for the Maximum Subarray Problem ∗

Tadao Takaoka
Department of Computer Science

University of Canterbury
Christchurch, New Zealand

Abstract

Parallel algorithm design is generally hard. Parallel
program verification is even harder. We take an ex-
ample from the maximum subarray problem and and
show those two problems of design and verification.

The best known communication steps for a mesh
architecture for the maximum subarray problem is
2n − 1. We give a formal proof for the parallel al-
gorithm on the mesh architecture based on Hoare
logic. The main part of the proof is to establish sev-
eral space/time invariants with three indices (i, j, k).
The indices (i, j) pair specifies the invariant at the
(i, j) grid point of the mesh and k specifies the k-
th step in the computation. Then ignoring additive
constants, the communication steps are improved to
(3/2)n steps and finally n steps, which is optimal in
terms of communication steps. Also the first algo-
rithm is implemented on a Blue Gene parallel com-
puter and performance measurements conducted are
shown.

1 Introduction

The maximum subarray problem is to find a rectangu-
lar subarray in the given (n, n)-two dimensional array
that maximizes the sum in it. If the array elements
are non-negative, we have the trivial solution of the
whole array. Thus we subtract the mean value, or an-
other anchor value depending on applications. This
problem has wide applications from graphics to data
mining. In graphics, the maximum subarray corre-
sponds to a brightest spot in the given graphic image.
In data mining, suppose we spread the sale amounts
of some product on a two dimensional array classi-
fied by ages and annual income. Then the maximum
subarray corresponds to the most promising customer
range.

The typical algorithm by Bentley [2] takes O(n3)
time on a sequential computer. This has been
improved to slightly sub-cubic by Tamaki and
Tokuyama [8], and Takaoka [7]. When the data is
large, such as (1024, 1024) in graphics applications,
those time complexities are prohibitive. This is more
so, when we need to process video images in dynamic
changing situations. An obvious choice is parallel

∗This research was supported by the EU/NZ Joint Project,
Optimization and its Applications in Learning and Industry (Op-
tALI).
Copyright c©2014, Australian Computer Society, Inc. This pa-
per appeared at the 12th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2014), Auckland, New
Zealand, January 2014. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 152, B. Javadi and
S. K. Garg, Ed. Reproduction for academic, not-for-profit pur-
poses permitted provided this text is included.

One cell-

-

-

-
?

?

Data

Control

Data

Control

Data

Data

Figure 1: Two-dimensional architecture

computing. In Takaoka [7], a parallel implementa-
tion on a PRAM is discussed. As parallel computers
such as GPU are becoming readily available, we need
to devise a parallel algorithm implementable on those
parallel computers. In Bae and Takaoka [4], Bae [3] a
parallel algorithm was implemented on an (n, n)-two
dimensional architecture based on the row-wise pre-
fix sum. In this paper, we implement an algorithm
based on the column-wise prefix sum with different
data flow on a two-dimensional mesh architecture.
See Fig. 1. Our algorithm performs the computa-
tion in 2n−1 steps, where steps mean communication
steps. Each cell executes a few statements per com-
munication step. Thus our algorithm is cost optimal
with respect to the prefix sum-based sequential algo-
rithm. A parallel algorithm for the same problem was
implemented on the BPS/CGM architecture, which
has more local memory and communication capabili-
ties with remote processors [1].

We give a formal proof for the algorithm. It is
based on the space-time invariants defined on the ar-
chitecture. The proof leads us to a further speed-up
of the computation. The data flow in the first imple-
mentation is from left to right and from top to down.
The proof reveals that the processors to the right are
idling at the the beginning. We first extend the data
flow to operate in both directions horizontally to get
the (3/2)n steps result. Then we further extend data
flow to operate in both directions vertically, i.e., data
flow in four directions, so that the solution can be
obtained at the center. By this method we achieve
n steps, which is optimal. Algorithms are given by
pseudo code.

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

45



2 Sequential algorithm

We modify a sequential algorithm based on row-wise
prefix sums introduced in [4] to the one based on
column-wise prefix sums, to develop Algorithms 1, 2
and 3.

Algorithm - sequential
for i := 1 to n do
{min sum[i][0] :=∞; sum[i][0] := 0;
sol[i][0] := −∞; }

S := −∞;
fork := 1 to n do {

for j := 1 to n do column[k − 1][j] := 0;
for i := k to n do {

for j := 1 to n do{
column[i][j] := column[i− 1][j] + a[i][j];
sum[i][j] := sum[i][j − 1] + column[i][j];
min sum[i][j] :=
min{sum[i][j],min sum[i][j − 1]; };

max sum[i][j] := sum[i][j]−min sum[i][j];
sol[i][j] := max{max sum[i][j], sol[i][j − 1]};
} /* j */

if solution[i][n] > S then S := solution[i][n];
} /* i */
} /* k */

j

i

k

min sum max sum

Figure 2: Strip-based sequential computation

The computation proceeds with the strip of the
array from position k to position i. The variable
column[i][j] is the sum of array elements in the j-th
column from position k to position i in array a. The
variable sum[i][j], called a prefix-sum, is the sum of
the strip from position 1 to position j. Within this
strip, variable j sweeps to compute column[i][j] by
adding a[i][j] to column[i − 1][j]. Then the prefix
sum of this strip from position 1 to position j is com-
puted by adding column[i][j] to sum[i][j − 1]. The
variable min sum[i][j] is the minimum prefix sum of
this strip from position 1 to position j, expressed
by “min sum” in the figure. If the current sum is
smaller than min sum[i][j], min sum[i][j] is replaced
by it. sol[i][j] is the maximum sum in this strip so
far found from position 1 to position j. It is com-
puted by taking the maximum of sol[i][j − 1] and
sum[i][j] − min sum[i][j], expressed by “max sum”
in the figure. After the computation for this strip is
over, the global solution, S, is updated by sol[i][n].
This computation is done for all possible i and k,
taking O(n3) time.

j

i

i + j − k

min max c

Figure 3: Illustration for Algorithm 1 (c for column)

3 Parallel algorithm Algorithm 1

The following is a parallel algorithm corresponding to
the sequential algorithm in the previous section. The
following program is executed by a cell at the (i, j)
grid point. Each cell(i, j) is aware of its position
(i, j). Data flow is from left to right and from top
to down. The control signals are fired at the left
border, and propagate right. When the signal arrives
at the cell (i, j), it accumulates the column sum
“column” (c in the figure), the sum “sum”, and
update min sum, etc. We assume all corresponding
instructions in all cells are executed at the same
time, that is, they are synchronized. We will later
make some comments on asynchronous computation.

Algorithm 1
Initialization
for all i, j between 0 and n do in parallel
{column[i][j] := 0; min[i][j] :=∞;
control[i][[j] := 0; sum[i][j] := 0;}

for all i in parallel do {control[i][0] = 1;
sol[i][0] := −∞; }

Main
for k := 1 to 2n− 1 do

for all i, j between 1 and n do in parallel {
if control[i][j − 1] = 1 then {

column[i][j] := column[i− 1][j] + a[i][j];
sum[i][j] := sum[i][j − 1] + column[i][j];
min[i][j] :=
minimum(min[i][j − 1], sum[i][j]);

max[i][j] := sum[i][j]−min[i][j];
sol[i][j] := maximum(sol[i− 1][j],
sol[i][j − 1], sol[i][j],max[i][j]);

control[i][j] := 1;
}
} ** i, j **
} ** k **

We prove the correctness of this parallel program
in a framework of Hoare logic [5] based on a restricted
form of that in Owicki and Gries [6]. The latter is
too general to cover our problem. We keep the min-
imum extension of Hoare logic to our mesh architec-
ture. The meaning of {P}S{Q} is that if P is true
before program (segment) S and S stops, then Q is
true after S stops. The typical loop invariant appears
as that for a while-loop; “while B do S”. Here S is a
program, and B is a Boolean condition. If we can
prove {P ∧ B}S{P}, we can conclude {P} while B
do S{P∧ ∼ B}, where ∼ B is the negation of B. P is
called the loop invariant, because P holds whenever

CRPIT Volume 152 - Parallel and Distributed Computing 2014

46



the computer comes back to this point to evaluate
the condition B. This is time-wise invariant as the
computer comes back to this point time-wise. We
establish invariants in each cell. They are regarded
as time-space invariants because the same conditions
hold for all cells as computation proceeds. Those in-
variants have space indices i and j, and time index
k. Thus our logical framework is a specialization of
Owicki and Gries to indexed assertions.

The main assertions are given in the following.
Note the difference between the wordings “sum of”
and “sum in”. Indices are attached to assertion
names when necessary.

At time k ( at the end of the k-th iteration) the fol-
lowing hold.
For i = 1, ..., n and j = 1, ..., k
P0 : control[i][j] = 1
P1 : c[i][j] is the column sum of a[i+j−k, ..., i][j],
that is, the sum of the j-th column of array a from
position i + j − k to position i
P2 : s[i][j] is the sum of a[i + j − k, ..., i][1, ..., j]
P3 : min[i][j] is the minimum of s[i][l], l = 1, ..., j
P4 : max[i][j] is the maximum of the sum of
a[i + j − k, ..., i][l, ..., j], 1 ≤ l ≤ j.
P5 : sol[i][j] is the maximum sum in a[i + j −
k, ..., i][1, ..., j], that is, the sum of the maximum sub-
array of array portion a[i + j − k, ..., i][1, ..., j].

The above are equivalent to
1 ≤ i ≤ n ∧ 1 ≤ j ≤ k ⇒ P0, ..., P5.
From this we obviously have P0(k) = true, ..., P5(k) =
true for k = 0.

For each P0, ..., P5 we omit indices i and
j. Using the time index k, we prove {P0(k −
1)}cell(i, j){P0(k)}, ..., {P5(k − 1)}cell(i, j){P5(k)}.

We use the following proof rules. Let x1, ..., xn
be local variables in cell(1), ..., cell(n). There can be
several in each cell. We use one for simplicity. The
meaning of yi/xi is that the occurrence of variable
xi in Q is replaced by yi. Parallel execution of
cell(1), ..., cell(n) is shown by [cell(1)||...||cell(n)].

Parallel assignment rule

P ⇒ Q[y1/x1, ..., yn/xn],
{Q[y1/x1, ..., yn/xn]}cell(i){Q}fori = 1, ..., n

{P}[cell(1)||...||cell(n)]{Q}
Other programming constructs such as composition
(semi-colon), if-then statement, etc. in sequen-
tial Hoare logic can be extended to the parallel
versions. Those definitions are omitted, but the
following rule for for-loop for the sequential con-
trol structure, which controls a parallel program
S from outside, is needed for our verification purpose.

Rule for for-loop

{P (0)}, {P (k − 1)}S{P (k)}
{P (0)}fork := 1to n do S{P (n)}

This P represents P0, ..., P5 in our program. S is
a parallel program [cell(1)||...||cell(n)]. Each cell(i)
has a few local variables and assignment statements.
For an arbitrary array x, we regard x[i][j] as a local
variable for cell(i, j). A variable from the neighbour,
x[i − 1][j], for example, is imported from the upper
neighbour. Updated variables are fetched in the next
cycle. How to implement this part depends on the
parallel computing environment used. See Section 6.
The proof for each {P (k−1)}cell(i, j){P (k)} for P =
P0, ..., P5 is given in Appendix.

Theorem 1 Algorithm 1 is correct. The result is ob-
tained at cell(n, n) in 2n− 1 steps.

Proof. From the second rule for a sequential loop, we
have P5(2n− 1) at the end.

P5(2n− 1) at cell(n, n)
⇔ sol[n][n] is the maximum sum in
a[n + n− 2n + 1, ..., n][1, ..., n]
⇔ sol[n][n] is the maximum sum in
a[1, ..., n][1, ..., n].

4 Algorithm 2

This algorithm does communication bi-directionally
in a horizontal way. For simplicity we assume n is
even. The (n, n) mesh is divided into two halves,
left and right. The left half operates in the same
way as Algorithm 1. The right half operates in
a mirror image, that is, control signals go from
right to left initiated at the right border. All
other data also flows from right to left. At the
center, that is, at (i, n/2), cell(i, n/2) performs
“center[i] := max[i][n/2] + max[i][n/2 + 1]”, which
adds the two values that are the sums of strip regions
in the left and right whose heights are equal and
thus can be added to form a possible solution over
the center. At the end of the k-th iteration, all
assertions in Algorithm 1 hold on the left half and
the assertions in mirror image hold on the right half.
In addition, we have that center[i] is the value of the
maximum subarray that lies above or touching the
i-th row and crosses over the center line.

Algorithm 2
Initialization
for all i, j between 0 and n do in parallel
{column[i][j] := 0;min[i][j] := −∞;

control[i][[j] := 0; sum[i][j] := 0;}
for all i do in parallel
{control[i][0] := 1; control[i, n + 1] := 1; }

Main
for k := 1 to (3/2)n− 1 do

for all i = 1, ..., n, j = 1, ..., n do in parallel
if 1 ≤ j ≤ n/2 then /*** left half ***/

if control[i][j − 1] = 1 then {
column[i][j] := column[i− 1][j] + a[i][j];
sum[i][j] := sum[i][j − 1] + column[i][j];
min[i][j] :=

minimum(min[i][j − 1], sum[i][j]);
max[i][j] := sum[i][j]−min[i][j];
sol[i][j] := maximum(sol[i− 1][j],
sol[i][j − 1]); sol[i][j],max[i][j]);

control[i][j] := 1;
}

if n/2 + 1 ≤ j ≤ n then /*** right half ***/
if control[i][j + 1] = 1 then {
column[i][j] := column[i− 1][j] + a[i][j];
sum[i][j] := sum[i][j + 1] + column[i][j];
min[i][j] :=

minimum(min[i][j + 1], sum[i][j]);
max[i][j] := sum[i][j]−min[i][j];
sol[i][j] :=
maximum(sol[i− 1][j], sol[i][j + 1]),
sol[i][j],max[i][j]);

control[i][j] := 1;
}

if j = n/2 then {
/*** cell(i, n/2) processes center[i] ***/

center[i] := max[i][n/2] + max[i][n/2 + 1];
if center[i] < center[i− 1] then

center[i] := center[i− 1];
}

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

47



} / ** i, j **/
} /** k **/

***Finalization step ***
Let cell(n, n/2) do

solution = maximum(sol[n][n/2],
sol[n][n/2 + 1], center[n]);

The strip cell(i, j) processes is a[i + j −
k, ..., i][1, ..., j] in the left half and that in the right
half is a[i + n− j + 1− k, ..., i][j, ..., n]. Thus the cell
cell(i, n/2) and cell(i, n/2 + 1) process the strips of
the same height in the left half and the right half.
Communication steps are measured by the distance
from cell(1, 1) to cell(n, n/2), or equivalently from
cell(1, n) to cell(n, n/2 + 1), which is (3/2)n− 1. By
adding the finalization step, we have (3/2)n for the
total communication steps.

5 Algorithm 3

In this algorithm data flows in four directions. The
array is divided into two halves; left and right as in
the previous section. Column sums c and prefix sums
s accumulate downwards as before, whereas column
sums d and prefix sums t accumulate upwards. See
Figure 4.

j

cs

dt

i
i + 1

i + j − k

i− j + k + 1

Figure 4: Illustration for Algorithm 3

The proof of Algorithm 1 reveals that at the end
of the k-th iteration, s[i][j] is the sum of a[i + j −
k, ..., i][1, ..., j] and t[i+1][j] is the sum of a[i+1, ..., i−
j + k + 1][1, ..., j]. The height of each subarray is k−
j+1. Since the width of those two areas are the same,
we can have the prefix sum u[i][j] = s[i][j]+ t[i+1][j]
that covers a[i + j − k, ..., i − j + k + 1][1, ..., j], the
height of which is 2(k − j + 1). That is, spending k
steps, we can achieve twice as much height.

The solution array sol is calculated as before, but
the result is sent into three directions; up, down and
right in the left half and up, down and left in the right
half. We have the invariant that sol[i][j] is the maxi-
mum sum in subarray a[i+j−k, ..., i−j+k+1][1, ..., j]
in the left half. Substituting i = n/2, j = n/2, and
k = n − 1 yields the subarray a[1, ..., n][1, ..., n/2].
Similarly sol[n/2][n/2 + 1] is the maximum sum in
the subarray a[1, ..., n][n/2 + 1, ..., n]. For simplicity
we deal with the maximum subarray whose height is
an even number. For a general case, see the note at
the end of this section.

Algorithm 3
Initialization
for all i, j between 0 and n + 1 do in parallel {
c[i][j] := 0; d[i][j] := 0;

min[i][j] := −∞; control[i][[j] := 0;
s[i][j] := 0; t[i][j] := 0;}

for all i in parallel do
{control[i][0] := 1; control[i, n + 1] := 1; }

Main
for k := 1 to n− 2 do

for all i = 1, ..., n, j = 1, ..., n do in parallel
if 1 ≤ j ≤ n/2 {

if control[i][j − 1] = 1 then {
c[i][j] := c[i− 1][j] + a[i][j];
s[i][j] := s[i][j − 1] + c[i][j];
d[i][j] := d[i + 1][j] + a[i][j];
t[i][j] := t[i][j − 1] + d[i][j];
u[i][j] = s[i][j] + t[i + 1][j];
min[i][j] := minimum(min[i][j−1], u[i][j]);
max[i][j] := u[i][j]−min[i][j];
sol[i][j] := maximum(sol[i− 1][j],
sol[i + 1][j]), sol[i][j − 1], sol[i][j]);

sol[i][j] := maximum(sol[i][j],max[i][j]);
control[i][j] := 1;

}
if n/2 + 1 ≤ j ≤ n {

if control[i][j + 1] = 1 then {
c[i][j] := c[i− 1][j] + a[i][j];
s[i][j] := s[i][j + 1] + c[i][j];
d[i][j] := d[i + 1][j] + a[i][j];
t[i][j] := t[i][j + 1] + d[i][j];
u[i][j] := s[i][j] + t[i + 1][j];
min[i][j] := minimum(min[i][j+1], u[i][j]);
max[i][j] := u[i][j]−min[i][j];
sol[i][j] := maximum(sol[i− 1][j],
sol[i + 1][j], sol[i][j + 1]), sol[i][j]);

sol[i][j] := maximum(sol[i][j],max[i][j]);
control[i][j] := 1;
}

}
if j = n/2 {
/*** cell(i, n/2) performs the following. ***/
center[i] := max[i][n/2] + max[i][n/2 + 1];
if center[i] < center[i− 1] then

center[i] = center[i− 1];
if center[i] < center[i + 1] then

center[i] := center[i + 1];
}
} /** i, j **/
} ** k **
if i = n/2 and j = n/2 then
/** cell(n/2, n/2) processes solution **/
solution := maximum(sol[n/2][n/2],

sol[n/2][n/2 + 1], center[n/2];

The computation proceeds with n − 2 steps by
k and the last step of comparing the results from
cell(n/2, n/2) and cell(n/2+1, n/2), resulting in n−1
steps in total.
Note. We described the algorithm for the solution
whose height is an even number. This fact comes
from the assignment statement “u[i][j] := s[i][j] +
t[i+ 1][j]” where the height of subarrays whose sums
are s and t are equal. To accommodate a height of
an odd number, we can use the value of t one step
before, whose height is one shorter. To accommodate
such odd heights, we need to almost double the size
of the program by increasing the number of variables.

6 Implementation issues

We implemented Algorithm 1 on the Blue Gene/P
computer under the MPI/Parallel C program envi-
ronment. There are many practical issues to be con-
sidered. We summarize just three issues here as rep-
resentatives.

CRPIT Volume 152 - Parallel and Distributed Computing 2014

48



We can let each cell(i, j) know its position (i, j)
by a system call “MPI Cart coords”.

The next issue is synchronization. We assumed
the corresponding statements in all cells are executed
in a synchronized way. If we remove this assump-
tion, that is, if the execution goes in asynchronous
manner, the algorithm loses its correctness. Most
mesh computers run asynchronously, but have
synchronization primitives. Suppose we have the
simplest synchronization primitive “synchronize”.
This means that when all cells come to this primitive,
they can go ahead. In MPI, this primitive is called
“MPI Barrier”. To make a correct program, we
double the number of variables, that is, we prepare
variable x1 for every variable x. Let us associate the
space/time index, (i, j, k) with each variable. Let us
call x(i, j, k) the current variable and the variable
with indices different by one a neighbour variable.
For example sol[i][j] in the right-hand side of the
assignment statement is a time-wise neighbour and
that at the left-hand side is a current variable. Also
column[i− 1][j] in the rght-hand side is a neighbour
variable space-wise and time-wise, and so on. If x is a
current variable, change it to x1. If it is a variable of
a neighbour keep it as it is. Let us call the modified
program P1. Now we define “update” to be the set
of assignment statements of the form x := x1.

Example Let P be a one-dimensional mesh program
given below, which shifts array x by one place. Let
us suppose x[0] = 0 and x[i] are already given.

P : for all i do in parallel x[i] := x[i− 1];

Here x[i] is the current variable and x[i − 1] is a
neighbour variable space-wise and time-wise. An
asynchronous computer can make all values 0. For
the intended outcome, we perform P1, synchronize
and update.

P1 : for all i do in parallel x1[i] := x[i− 1];
synchronize;
update : for all i do in parallel x[i] := x1[i];

For our mesh algorithm, Algorithm 1, omitting the
initialization part, we make the program of the form.

for k := 1 to 2n− 1 do
beginP1; synchronize;update end.

The third implementation issue is related to the num-
ber of available processors. As the number of pro-
cessors is limited, for large n we need to have what
is called a coarse grain parallel computer. This
means that given a large (n, n)-array, each proces-
sor is given its territory. Suppose, for example, we
are given (1024, 1024) array and only 16 processors
are available. The input array is divided into sixteen
(256, 256) subarrays, to which the sixteen processors
are assigned. Let us call the subarray for each proces-
sor its territory. Each processor simulates one step of
Algorithm 1 sequentially. These simulation processes
by sixteen processors are done in parallel. At the end
of each simulation, the values in the registers on the
right and bottom border are sent to the left and top
borders of the right neighbour and the lower neigh-
bour. The simulation of one step takes O((n/p)2)
time, and 2n − 1 steps are carried out, meaning the
computing time is O(n3/p2) at the cost of O(p2) pro-
cessors. When p = 1, we hit the sequential complexity
of O(n3). If p = n, we have the time complexity of
Algorithm 1, which is O(n).

Based on the above methods for implementation,
we implemented Algorithm 1 on the Blue Gene
computer at the University of Canterbury. The
version was BlueGene/P with 4096 processors, called
cores. For the software side, the programming
environment of MPI and the parallel C compiler,
mpixlc, were used with optimization level 5. The
timing results are shown below. The unit of time
is second. (n, n) random arrays are tested. The
time for generating uniformly distributed random
numbers is not included in the time measurement.
The mesh architecture can be figured into a 2-D
mesh or 3-D mesh. We figured it into 2-D and
included the configuration time in the measure-
ment. The data items were loaded appropriately
into processors and loading time was excluded
from time measurement. As we can see from the
table below, for small n, the configuration time
dominates and a large number of processors has
no effect. As the size of array increases, however,
the speed increases with a large number of processors.

n p2 = 1 p2 = 16 p2 = 25 p2 = 100
50 0.03275 0.00627 0.01274 0.03378

100 0.05143 0.02742 0.02869 0.04643
200 0.14794 0.12909 0.10898 0.11304
500 1.21697 1.32867 1.09698 2.29324

1000 7.72829 8.62130 6.28106 2.96971
1500 22.3838 27.8474 19.1569 7.24681
2000 49.7604 63.9644 42.7302 15.1321
2500 95.3663 120.392 82.2593 26.7386

7 Lower bound

Algorithms 2 and 3 are not very efficient for practical
purposes. Rather their roles are to show the optimal
bound of communication steps. Suppose we have a
value a in the top-left cell and b in the bottom-right
cell. All others are -1. Obviously the solution is a if
a > b, and b otherwise. The values a and b need to
meet somewhere. It is easy to see the earliest possi-
bility is at time n-1. Thus Algorithm 3 is optimal in
communication steps. The role of Algorithm 2 is a
bridging step to Algorithm 3.

8 Concluding remarks

We gave a formal proof to a parallel algorithm for the
maximum subarray problem. The formal proof for
the other two parallel algorithms can be given in a
similar way, but the details are omitted. The formal
proof is not only for the reliability of the algorithm,
but also it clarifies what is going inside the algorithm.
In fact, the other two parallel algorithms, Algorithm 2
and Algorithm 3, have been developed by the insight
into the data flow, given by the formal proof of Al-
gorithm 1. We simplified the proof by synchronizing
everything. The asynchronous version with (synchro-
nize, update) in Section 6 would require about twice
as much complexity for verification since we double
the number of variables. Once the correctness of the
synchronized version is established, that of the asyn-
chronous version will be acceptable without further
verification.

The algorithms are of fine-grain in the sense that
each array element, or pixel in graphics, is processed
by a processor. When the given array is large, such as
(1024, 1024), this is not practical. That is, we need
to develop a parallel algorithm of coarse grain. This
means one processor will take care of some portion
of the given array. When each processor finishes one
step of k, the time index, it can communicate with

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

49



the neighbour for data transmission. In fact this ver-
sion has been implemented on the BlueGene parallel
computer with 4096 processors, and we observed a
remarkable speed-up with 100 processors. The exper-
iment conducted was rather of small scale. A larger
experiment with a larger number of processors will be
carried out in the future.

If we analyze dynamic images, such as video im-
ages, data loading becomes a big issue. Data must
come through the top or left border processors. For
the sake of speed, data must be processed in a pipe-
line manner, that is, data must be fed into the mesh
architecture while the previous image is still being
processed. We already have this pipe-lined version of
Algorithm 1, which must be tested on the BlueGene
for time measurement.

In our architecture, communication with the right
neighbour and left neighbour cannot be done at the
same time, that is, they are done one by one. To
speed up Algorithm 2 and Algorithm 3, we need
a more advanced architecture with bi-directional
communication capabilities.

Appendix

Proof for {P0(k− 1)}cell(i, j){P0(k)}. At the be-
ginning of the k-th iteration, control[i][j] = 1 for
j = 1, ..., k − 1, equivalently control[i][j − 1] = 1 for
j = 1, ..., k. cell(i, j) performs “control[i][j] := 1” for
j = 1, ..., k. Thus we have {P0(k−1)}cell(i, j){P0(k)}
for j = 1, ..., k.

Proof for {P1(k − 1)}cell(i, j){P1(k)}. At time
k − 1, c[i− 1][j] is the column sum of
a[i−1+j−(k−1), ..., i−1][j] = a[i+j−k, ..., i−1][j].
“c[i][j] := c[i − 1][j] + a[i][j]” is performed for i =
1, ..., n and j = 1, ..., k in parallel. Thus {P1(k −
1)}cell(i, j){P1(k)} holds.

Proof for {P2(k − 1)}cell(i, j){P2(k)}. At time
k − 1, s[i][j − 1] is the sum of a[i + j − 1 − (k −
1), ..., i][1, ..., j − 1] = a[i + j − k, ..., i][1, ..., j − 1]. At
time k, “s[i][j] := s[i][j − 1] + c[i][j]” is performed for
i = 1, ..., n and j = 1, ..., k in parallel. Thus s[i][j]
is the sum of a[i + j − k, ..., i][1, ..., j], and {P1(k −
1)}cell(i, j){P1(k)} holds.

Proof for {P3(k − 1)}cell(i, j){P3(k)}.
At time k − 1, min[i][j − 1] is the minimum of
s[i][l], l = 1, ..., j − 1. At time k, “min[i][j] :=
minimum(min[i][j − 1], s[i][j])” is performed for i =
1, ..., n and j = 1, ..., k in parallel. Thus min[i][j]
is the minimum of s[i][l], l = 1, ..., j. Therefore
{P3(k − 1)}cell(i, j){P3(k)} holds.

Proof for {P4(k−1)}cell(i, j){P4(k)}. At time k,
min[i][j] is the minimum of s[i][l], l = 1, ..., j. At time
k, “max[i][j] := s[i][j] − min[i][j]” is performed for
i = 1, ..., n and j = 1, ..., k in parallel. Thus max[i][j]
is the maximum of the sum of a[i+ j− k, ..., i][l, ..., j]
for 1 ≤ l ≤ j. Therefore {P4(k − 1)}cell(i, j){P4(k)}
holds.

Proof for {P5(k − 1)}cell(i, j){P5(k)}.
At time k − 1, sol[i][j − 1] is the maximum sum in
a[i + j − 1− (k − 1), ..., i][1, ..., j − 1]
= a[i + j − k, ..., i][1, ..., j − 1],
and sol[i − 1][j] is the maximum sum in
a[i− 1 + j − (k − 1), ..., i− 1][1, ..., j]
= a[i + j − k, ..., i− 1][1, ..., j].
At time k,
sol[i][j] := maximum(sol[i− 1][j], sol[i][j − 1],

sol[i][j],max[i][j])
is performed for i = 1, ..., n and j = 1, ..., k in
parallel. The first two cases do not cover a[i][j]. The
last two cases cover a[i][j]. sol[i][j] is the solution
for cell(i, j) for the time up to k − 1, which does not
cover row i + j − k, and max[i][j] is the maximum

sum of the strip that ends at column j. Thus sol[i][j]
is the maximum sum in a[i + j − k, ..., i][1, ..., j], and
{P5(k − 1)}cell(i, j){P5(k)} holds.

Acknowledgment The author is thankful to Robin
Candy who implemented Algorithm 1 on the Blue
Gene and conducted time measurements. He also ap-
preciates useful discussions on the maximum subarray
problem with Sung Eun Bae. Finally he is grateful
to the supercomputer centre of University of Canter-
bury, Blue Fern, who offered a free use of Blue Gene
for the research on the mesh algorithms.

References

[1] C. E. R. Alves, E. N. Caceres and S. W. Song:
BPS/CGM Algorithms for Maximum Subse-
quence and Maximum Subarray, EuroPVM/MPI
2004, LNCS 3241: 139-146 (2004)

[2] Jon Louis Bentley: Perspective on Performance.
Commun. ACM 27(11): 1087-1092 (1984)

[3] Sung Eun Bae: Sequential and Parallel Al-
gorithms for Generalized Maximum Subarray
Problem. Ph. D thesis. University of Canterbury
(2007)

[4] Sung Eun Bae and Tadao Takaoka: Algorithms
for the Problem of K Maximum Sums and a VLSI
Algorithm for the K Maximum Subarrays Prob-
lem. I-SPAN 2004: 247-253 (2004)

[5] C.A.R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10):576-580 (1969).

[6] S. Owicki and D. Gries: Verifying proper-
ties of parallel programs: An axiomatic ap-
proach. Communications of the ACM, 19(5):279-
285 (1976)

[7] Tadao Takaoka: Efficient Algorithms for the
Maximum Subarray Problem by Distance Ma-
trix Multiplication. Electr. Notes Theor. Com-
put. Sci. 61: 191-200 (2002)

[8] Hisao Tamaki, Takeshi Tokuyama: Algorithms
for the Maximum Subarray Problem Based on
Matrix Multiplication. SODA 1998: 446-452
(1998)

CRPIT Volume 152 - Parallel and Distributed Computing 2014

50



Communication Delegation Method for Exascale Systems

Yugendra R. Guvvala1 Yu Zhuang2

Department of Computer Science
Texas Tech University,

Lubbock, Texas-79409, USA
1Email: yugendra.r.guvvala@ttu.edu

2 Email: yu.zhuang@ttu.edu

Abstract

High Performance Computing is trending towards
exascale and some of the major barriers of high
performance computing or scientific computing are
dominated by latencies incurred due to storage, com-
munication, and component failures. In this paper
we discuss a technique to overcome one of those
obstacles: latency incurred due to communication.
This programming technique is developed using
existing MPI and OpenMP communication models
and the technique discussed in this paper is Com-
munication Delegation Method, which will provide
an efficient way of communicating across nodes and
reducing communication channel resource contention.

Keywords: Communication Delegation, Multicore
Machines, Communication Channel, Resource Con-
tention, Exascale Computing

1 Introduction

In today’s Scientific and high-performance com-
puting era Researchers, Scientists, and Engineers
require High Performance Computing resources to
solve many complex problems. Thus, deployments
of huge high performance computing resources are
growing at a rapid rate. These deployments are
growing in size and competing on speed by increasing
number of nodes and cores. According to Moor’s
Law projection and projections from the trend of the
Top500 listings we can observe that next generation
computing is cruising towards the exascale systems
we will approach it not later than end of this decade.

There are various methodologies and pro-
gramming models which are evolving to identify
parallelism in scientific applications. This evolution
is leading towards highly scalable and embarrass-
ingly parallel applications. The scalability of these
applications leads towards a very complex commu-
nication patterns, thus requiring high bandwidth
for better performance. Many scientific computing
applications in critical areas of research, such as
chemistry, nanotechnology, astrophysics, climate,
and high-energy physics are becoming more and more
communication intensive. Some of them such as
gene sequencing or other bioinformatics applications
are not very sensitive to latencies, where as some
applications such as weather, oil and gas need low
latency, high bandwidth to perform better. There are

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at 12th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2014), Auckland, New
Zealand, January 2014. Conferences in Research and Prac-
tice in Information Technology, Vol. 152. Bahman Javadi and
Saurabh Kumar Garg, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

several approaches made to improve communication
bandwidth and reduce latencies. In next generation
machines, which might have tens to hundreds of
cores per node even a small communication overhead
per core would add up to a huge latency. In this
study we look at the application and identify its
communication needs and delegate communication
to communication cores to reduce latency.

2 Background

There has been several studies on communica-
tion methods, programming models and hardware
enhancements (2)(8)(9) which contribute to im-
provement of communication mechanism on High
Performance Computing clusters. Some of these
contributions are software based where as others
are hardware based. We will look into some of the
existing methodologies here.

2.1 Software Based Approaches

Software based approaches exist from early days of
cluster computing, some of these approaches has been
evolving based on the hardware enhancements and
faster interconnects. But, primitive and standard
approach for exchanging messages across processors
is MPI (1). MPI is a standard for communica-
tion across multiple processors and this felicitates
development of parallel applications and libraries.
Other implementations of communication models by
targeting a specific application stack and hardware
are implementation of MPICH(4), MVAPICH(6),
OpenMP(3) and Global Arrays(5).

From above we can see that there are several
implementations which are software based but de-
pend on many specifications either accommodating
specific hardware or application. The current and
future generation of HPC machines are complex
mixture of different hardware based on budget and
requirements. Implementation of both shared and
distributed memory. Thus neither MPI (it’s imple-
mentations) nor Open MP, are a de facto standard
communication methodology.

2.2 Hardware Based Approaches

In early methods to improve performance of the
communication on clusters some of them approach
by incorporating message transfer into memory
controllers of the system(9) some try to integrate
communication into processor internals(10)(11),
some design and implement lean communication
software layers, where as other techniques isolate

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

51



communication processes to a dedicated communica-
tion core .

Recent improvements are mostly based on complex
and faster interconnects, like Infiniband(7), Gigabit
Ethernet(12), Tofu Interconnect(13), and other
interconnects in high performance computing(14),
Still this interconnects are not standard as they
depend on vendor for their implementation purpose.
Thus developing applications for specific underlying
hardware is not the best idea.

The direction of Exascale system is towards multi-
cores and many nodes model. Due to multiple archi-
tectures, we need to identify a consistent communica-
tion design approach which would fit in and scale ap-
plications appropriately over different deployments.
This signifies the need of dynamic method which can
adopt to different types of hardware and application
requirements.

3 Communication Delegation Method

3.1 Motivation

Due to different communication processes & char-
acteristics, and hardware developments, we need
to develop programming models which are efficient
and flexible to adopt towards next generation ex-
asclae machines. As throughput of many scientific
applications is dependent on communication process
we need to identify techniques to adopt it in next
generation systems.

Considering multicore architectures we identify
that communication between processes on cores
belonging to same die is faster than communication
of processes on cores from remote processors. The
communication channel is a resource for multiple
cores this channel gets over whelmed and raises
communication channel resource contention issue.

3.2 Design Rationale

Communication delegation models is a idea of group-
ing cores based on there spatial locality, dedicating
a core per group for communication purpose. For
application with high communication intensity and
high scalability we need special considerations. Next
generation machines will be equipped with tens to
hundreds of cores per node, thus the we need to
adopt an appropriate communication methodology
(MPI, OpenMP, or Hybrid) based on application
and system needs. All existing models are efficient
but, non of the models address communication
channel contention issue. In the methods discussed
in this paper we try to reduce the impact of this
problem. Compute cores (red) perform computations
where as Communication core (green) gathers data
to be transferred in a pool and packages it and
transfers the data to communication core on another
communication pool.

i) Design Example: From the Fig 1 we can
see that a set of cores form a group , called com-
munication pool and we have a delegated core for
communication purpose.

ii) MPI Communication Delegation
Method: This model explains how we can im-
plement the above discussed design in a MPI based
application. In this design we make use of communi-
cation worlds of MPI, we group communication pools

Figure 1: Design Example: 80 core node with one
delegated core for communication

into different communication worlds, we group all
the delegated cores for communication into a another
set of communication world. This allows delegated
cores to pass messages across pools.

Figure 2: MPI Communication Delegation Method

In Fig 2 we used the communication worlds of
MPI to form different groups for communication.
This communication world pools would allow us to
gather communications of all the processes within
the pool and transferring them at a time to another
pool’s communication core.

Figure 3: Hybrid Communication Delegation Model

iii) Hybrid Communication Delegation
Method: This design is targeting the Hybrid pro-
gramming model using both MPI and OpenMP. In
a hybrid model we have inter node communication
using OpenMP and intra node communication using
MPI. But if we have a core dedicated for communica-
tion purpose which also acts as a master node for the
communication pool to spawn slave threads, and per-
form other administrative tasks such as gathering and

CRPIT Volume 152 - Parallel and Distributed Computing 2014

52



buffering communications and work as a fail-over core
for the pool. Form Fig 3 we can observe that inter
node cores form communication pools and delegated
cores form a pool use MPI communication world to
communicate with each other.

4 Theoretical Validation

We validate the proposed methodology using both
hardware and software evaluation.

4.1 Hardware Validation:

Considering the fastest FSB and fastest PCIe busses
we can see that the FSB is at least 2 times faster
than the PCIe, thus we can see that if we send an
information to a closer core by placing it on to a
memory location it is faster than transferring across
the node using the PCIe card and a interconnect. In
Fig 4 you can look at different internal buses. Every
core has a faster access bus to the memory, where as
there is only one communication channel per node to
communicate intra nodes.

Figure 4: Different internal Communication Channels
(Bus) of a System

There are some existing hardware which already
provide similar functionality. For example Mellonox
Infiniband adopters offload the communication on
tho the Infiniband PCIe adaptors. How ever in
this model as we are delegating a core and inter
core communication is faster compared to PCI bus
communication this model proves to be more efficient.

4.2 Software Validation:

Different Non-data overheads (? ) of MPI that can
be reduced using CDM are as follows.
i) Basic MPI stack Overhead:
ii) Request Allocation or Queuing Overhead:
iii) Tag and Source Matching Overhead:
iv) Algorithmic Complexity and Multi-Request
Operation:
v) Derived Datatype Processing:
vi) Buffer Alignment Overhead:
vii) Unexpected Message Overhead:
viii) Thread Communication Overhead:

5 Experimental Evaluation

In this section we demonstrate the performance and
right choice of applications based on communication
characteristics. We will look at two major classical
examples which are building block of many scientific
and high-performance applications, Matrix Multipli-
cation, and Fast Fourier Transforms (FFT).

For performance evaluation of this method we use
a DELL cluster powers by PowerEdge R410 Blade
servers. The cluster consists of 96 nodes with 2x
sockets and intel Hex-core (Intel Xeon X5650) 2.66
GHz processors. Compute nodes were running Linux
CentOS 5.4 cluster operating system. Each node con-
tained a Mellanox Infiniband Host Channel Adapter
(HCA) supporting 4x Quad Data Rate (QDR) con-
nections with a speed of 20 Gbps. Each node also has
48 GB DDR3 1333 Mhz of memory the Cluster is a
12.3 TeraFLOPS.

5.1 Matrix Multiplication:

Fig-5 shows performance of different sizes of ma-
trix multiplication. Comparison is made between
MPI Implementation, Hybrid (OpenMP + MPI)
implementation, Communication Delegation Method
(CDM) incorporated MPI implementation and
Communication Delegation Method hybrid imple-
mentation. Three different matrix sizes results are
reported in this paper. The test bed of implementa-
tion consisted of four compute nodes with 12 cores
each in a communication pool with 1 delegated
processor. All tests were run on a 4 node or 48 cores
with 4 communication pools (one per each node)
and 4 communication cores (one per each pool/node).

Figure 5: Matrix Multiplication with increasing Size
of Matrix

From Fig-5, product of A and B multiplicand
matrices of sizes 100x100 , 200x200, 400x400,
800x800, 1600x1600 and 3200x3200 elements each
are computed. We can see form the graph that
Matrix multiplication which has less communica-
tion is not the best candidate for adopting this model.

5.2 NAS Parallel Benchmark-FT:

The NAS parallel benchmarks (NPB) were developed
by NASA Ames research centre for performance
evaluation of parallel and distributed computers.
After considering different characteristics of the
various benchmark kernels we identified FT (Fourier
Transforms) kernel to be most appropriate kernel for
evaluating CDM.

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

53



The Fast Fourier Transform (FT) benchmark
solves a partial differential equation (PDE) using for-
ward and inverse FFTs. The most interesting part for
us was the 3D FFTs (NxNxN grid size) which play a
key role in this benchmark and requires considerable
amount of communication for operation such as ar-
ray transposition. The steps involved in this kernel
are initially it initialized the input array using a psu-
dorandom generator, followed by a forwards 3-D FFT
computation, then the transformed data is multiplied
in loop with a coefficient array followed by inverse 3-D
FFT computation. FT kernel is programmed in both
MPI and OpenMP version in Fortran with around 20
MPI routines. We rewrote this benchmark tool with
both Open MP and MPI based Communication Del-
egation Method (CDM) and observed good results.

Figure 6: NAS NPB-3.1.1, FT Benchmark

The Fig-6 shows the performance of different
implementations with time on different number of
cores. We optimized bigger problem size kernel
C(5123) We can see that for a 24 core node it was
huge performance difference as the application was
communication heavy, eventually the performance
deteriorates because number of cores dedicated for
communication purpose increase. So if we have a
high core density on a node like 100 cores per node
and we dedicate only 1 core per node for communica-
tion purpose this would give us huge improvements.
Thus this kind of applications on a Exascale machine
would be estimated to perform outstandingly.

6 Conclusion and Future Work

So we conclude that we the model proposed in this
paper has a huge impact on high core density ma-
chines which will have a contention issue on the com-
munication channel resource. The model is more of a
dynamic solution as we can change number of cores
delegated for communication purpose based on appli-
cation needs. The applications with his communica-
tion intensity are the best application for adopting
CDM.

References

[1] Gropp, William, Ewing Lusk, Nathan Doss, and
Anthony Skjellum. ”A high-performance, portable

implementation of the MPI message passing in-
terface standard.” Parallel computing 22, no. 6
(1996): 789-828.

[2] Martin, Richard P., Amin M. Vahdat, David E.
Culler, and Thomas E. Anderson. Effects of com-
munication latency, overhead, and bandwidth in
a cluster architecture. Vol. 25, no. 2. ACM, 1997.

[3] Dagum, Leonardo, and Ramesh Menon.
”OpenMP: an industry standard API for
shared-memory programming.” Computational
Science and Engineering, IEEE 5, no. 1 (1998):
46-55.

[4] Gropp, William. ”MPICH2: A new start for MPI
implementations.” In Recent Advances in Parallel
Virtual Machine and Message Passing Interface,
pp. 7-7. Springer Berlin Heidelberg, 2002.

[5] Nieplocha, Jaroslaw, Robert J. Harrison, and
Richard J. Littlefield. ”Global Arrays: A portable
shared-memory programming model for dis-
tributed memory computers.” In Proceedings of
the 1994 ACM/IEEE conference on Supercomput-
ing, pp. 340-349. IEEE Computer Society Press,
1994

[6] Panda, D. K. ”MVAPICH.”

[7] InfiniBand Trade Association. InfiniBand Archi-
tecture Specification: Release 1.0. InfiniBand
Trade Association, 2000.

[8] Buenabad-Chvez, Jorge, Miguel A. Castro-Garca,
and Graciela Romn-Alonso. ”Simple, list-based
parallel programming with transparent load bal-
ancing.” In Parallel Processing and Applied Math-
ematics, pp. 920-927. Springer Berlin Heidelberg,
2006.

[9] E. D. Brooks III, B. C. Gorda, K. H.Warren, and
T.S. Welcome. BBN TC2000 Architecture and
Programming Models

[10] J.B. Carter, A. Davis, R. Kuramkote, C. Kuo,
L.B. Stoller, and M. Swanson. Avalanche: A Com-
munication and Memory Architecture for Scalable
Parallel Computing. Technical Report UUCS-95-
022, University of Utah, 1995

[11] D. Chiou, B.S. Ang, Arvind, M.J. Beckerle, G.A.
Boughton, R. Greiner, J.E. Hicks, and J.C. Hoe.
StarT-NG: Delivering Seamless Parallel Comput-
ing. In EURO-PAR95 Conference, Aug. 1995.

[12] Cunningham, David, Bill Lane, and William
Lane. Gigabit Ethernet Networking. Macmillan
Publishing Co., Inc., 1999.

[13] Ajima, Yuuichirou, Tomohiro Inoue, Shinya Hi-
ramoto, and Toshiyuki Shimizu. ”Tofu: Intercon-
nect for the K computer.” Fujitsu Sci. Tech. J 48,
no. 3 (2012): 280-285.

[14] Taubenblatt, Marc A. ”Optical interconnects for
high-performance computing.” Lightwave Tech-
nology, Journal of 30, no. 4 (2012): 448-457.

[15] Pavan Balaji, Anthony Chan, William Gropp,
Rajeev Thakur, and Ewing Lusk. 2010. The
Importance of Non-Data-Communication
Overheads in MPI. Int. J. High Per-
form. Comput. Appl. 24, 1 (February
2010), 5-15. DOI=10.1177/1094342009359528
http://dx.doi.org/10.1177/1094342009359528

CRPIT Volume 152 - Parallel and Distributed Computing 2014

54



Author Index

Blackmun, Fraser R., 11

Chiu, Yi-Chun, 3

Gallacher, Sarah, 11
Garg, Saurabh Kumar, iii, vii
Guvvala, Yugendra R., 51

Hawick, K. A., 21, 29
Hsueh, Sue-Chen, 3

Ibrahim, Idris S., 11

Javadi, Bahman, iii, vii
Johnson, M. G. B., 29

Lim, Mei Yii, 11
Lin, Ming-Yen, 3

Mehdipour, Farhad, 37
Mimtsoudis, Ioannis, 11
Murakami, Kazuaki, 37

Nunna, Krishna Chaitanya, 37

Papadopoulou, Elizabeth, 11
Playne, D. P., 21, 29

Skillen, Patrick, 11

Takaoka, Tadao, 45
Taylor, Nick K., 11

Whyte, Stuart, 11
Williams, M. Howard, 11

Zhuang, Yu, 51

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

55



Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 124 - Database Technologies 2012
Edited by Rui Zhang, The University of Melbourne, Australia
and Yanchun Zhang, Victoria University, Australia. January
2012. 978-1-920682-95-8.

Contains the proceedings of the Twenty-Third Australasian Database Conference
(ADC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 125 - Information Security 2012
Edited by Josef Pieprzyk, Macquarie University, Australia
and Clark Thomborson, The University of Auckland, New
Zealand. January 2012. 978-1-921770-06-7.

Contains the proceedings of the Tenth Australasian Information Security
Conference (AISC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 126 - User Interfaces 2012
Edited by Haifeng Shen, Flinders University, Australia and
Ross T. Smith, University of South Australia, Australia.
January 2012. 978-1-921770-07-4.

Contains the proceedings of the Thirteenth Australasian User Interface Conference
(AUIC2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 127 - Parallel and Distributed Computing 2012
Edited by Jinjun Chen, University of Technology, Sydney,
Australia and Rajiv Ranjan, CSIRO ICT Centre, Australia.
January 2012. 978-1-921770-08-1.

Contains the proceedings of the Tenth Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2012), Melbourne, Australia, 30 January – 3
February 2012.

Volume 128 - Theory of Computing 2012
Edited by Julián Mestre, University of Sydney, Australia.
January 2012. 978-1-921770-09-8.

Contains the proceedings of the Eighteenth Computing: The Australasian Theory
Symposium (CATS 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 129 - Health Informatics and Knowledge Management 2012
Edited by Kerryn Butler-Henderson, Curtin University, Aus-
tralia and Kathleen Gray, University of Melbourne, Aus-
tralia. January 2012. 978-1-921770-10-4.

Contains the proceedings of the Fifth Australasian Workshop on Health Informatics
and Knowledge Management (HIKM 2012), Melbourne, Australia, 30 January – 3
February 2012.

Volume 130 - Conceptual Modelling 2012
Edited by Aditya Ghose, University of Wollongong, Australia
and Flavio Ferrarotti, Victoria University of Wellington, New
Zealand. January 2012. 978-1-921770-11-1.

Contains the proceedings of the Eighth Asia-Pacific Conference on Conceptual
Modelling (APCCM 2012), Melbourne, Australia, 31 January – 3 February 2012.

Volume 133 - Australian System Safety Conference 2011
Edited by Tony Cant, Defence Science and Technology Or-
ganisation, Australia. April 2012. 978-1-921770-13-5.

Contains the proceedings of the Australian System Safety Conference (ASSC 2011),
Melbourne, Australia, 25th – 27th May 2011.

Volume 134 - Data Mining and Analytics 2012
Edited by Yanchang Zhao, Department of Immigration and
Citizenship, Australia, Jiuyong Li, University of South Aus-
tralia, Paul J. Kennedy, University of Technology, Sydney,
Australia and Peter Christen, Australian National Univer-
sity, Australia. December 2012. 978-1-921770-14-2.

Contains the proceedings of the Tenth Australasian Data Mining Conference
(AusDM’12), Sydney, Australia, 5–7 December 2012.

Volume 135 - Computer Science 2013
Edited by Bruce Thomas, University of South Australia, Aus-
tralia. January 2013. 978-1-921770-20-3.

Contains the proceedings of the Thirty-Sixth Australasian Computer Science
Conference (ACSC 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 136 - Computing Education 2013
Edited by Angela Carbone, Monash University, Australia and
Jacqueline Whalley, AUT University, New Zealand. January
2013. 978-1-921770-21-0.

Contains the proceedings of the Fifteenth Australasian Computing Education
Conference (ACE 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 137 - Database Technologies 2013
Edited by Hua Wang, University of Southern Queensland,
Australia and Rui Zhang, University of Melbourne, Aus-
tralia. January 2013. 978-1-921770-22-7.

Contains the proceedings of the Twenty-Fourth Australasian Database Conference
(ADC 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 138 - Information Security 2013
Edited by Clark Thomborson, University of Auckland, New
Zealand and Udaya Parampalli, University of Melbourne,
Australia. January 2013. 978-1-921770-23-4.

Contains the proceedings of the Eleventh Australasian Information Security
Conference (AISC 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 139 - User Interfaces 2013
Edited by Ross T. Smith, University of South Australia, Aus-
tralia and Burkhard C. Wünsche, University of Auckland,
New Zealand. January 2013. 978-1-921770-24-1.

Contains the proceedings of the Fourteenth Australasian User Interface Conference
(AUIC 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 140 - Parallel and Distributed Computing 2013
Edited by Bahman Javadi, University of Western Sydney,
Australia and Saurabh Kumar Garg, IBM Research, Aus-
tralia. January 2013. 978-1-921770-25-8.

Contains the proceedings of the Eleventh Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2013), Adelaide, Australia, 29 January – 1 Febru-
ary 2013.

Volume 141 - Theory of Computing 2013
Edited by Anthony Wirth, University of Melbourne, Aus-
tralia. January 2013. 978-1-921770-26-5.

Contains the proceedings of the Nineteenth Computing: The Australasian Theory
Symposium (CATS 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 142 - Health Informatics and Knowledge Management 2013
Edited by Kathleen Gray, University of Melbourne, Australia
and Andy Koronios, University of South Australia, Australia.
January 2013. 978-1-921770-27-2.

Contains the proceedings of the Sixth Australasian Workshop on Health Informat-
ics and Knowledge Management (HIKM 2013), Adelaide, Australia, 29 January –
1 February 2013.

Volume 143 - Conceptual Modelling 2013
Edited by Flavio Ferrarotti, Victoria University of Welling-
ton, New Zealand and Georg Grossmann, University of South
Australia, Australia. January 2013. 978-1-921770-28-9.

Contains the proceedings of the Ninth Asia-Pacific Conference on Conceptual Mod-
elling (APCCM 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 144 - The Web 2013
Edited by Helen Ashman, University of South Australia,
Australia, Quan Z. Sheng, University of Adelaide, Australia
and Andrew Trotman, University of Otago, New Zealand.
January 2013. 978-1-921770-15-9.

Contains the proceedings of the First Australasian Web Conference (AWC 2013),
Adelaide, Australia, 29 January – 1 February 2013.

Volume 145 - Australian System Safety Conference 2012
Edited by Tony Cant, Defence Science and Technology Or-
ganisation, Australia. April 2013. 978-1-921770-13-5.

Contains the proceedings of the Australian System Safety Conference (ASSC 2012),
Brisbane, Australia, 23rd – 25th May 2012.


	Vol152_frontmatter
	Vol152_main
	contributed_papers_front
	01_hsueh_lin_chiu
	02_AusPDC Williams
	03_hawick+playne-paper10
	04_playne+hawick-paper4
	05_Camera ready-Krishna C. Nunna et al., AusPDC14_ss
	06_aus3-takado
	07_AusPDC-Nov4-CamaraReady
	Vol152_index

	volume_trailer



