University of Southern Queensland

Faculty of Engineering & Surveying

Modular Robot Communication Interface

A dissertation submitted by
Kevin Stark
in fulfilment of the requirements of
ENG4112 Research Project
towards the degree of

Bachelor of Engineering (Software)

Submitted: November, 2006

Abstract

The field of robotics is a relatively new technology in comparison with other engineer-
ing technologies. The USQ Modular Robot is a continually evolving robot development
project which brings together a wide variety of engineering disciplines such as mechani-
cal, electrical and software together. The past research projects on the Modular Robot
have produced a set of mechanical components to build a robot structure with, and a
set of distributed controllers on a CAN network that can provide control over motors,
actuators and sensors throughout the robot. This project aims to extend functionality
of the distributed controllers by researching and developing a control system for the

Modular Robot.

While it has not been possible to achieve full positional control of the robot due to the
lack of software functionality in the distributed modules, this project has successfully
produced a highly configurable real-time communication interface to the CAN bus.
This interface will provide the groundwork required for further research in the field of

automation and control of the Modular Robot.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the
risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond
this exercise. The sole purpose of the course pair entitled “Research Project” is to
contribute to the overall education within the student’s chosen degree program. This
document, the associated hardware, software, drawings, and other material set out in
the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Professor R Smith
Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions
set out in this dissertation are entirely my own effort, except where otherwise indicated
and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

KEVIN STARK

0050009783

Signature

Date

Acknowledgments

I would like to acknowledge the support I have received from my supervisor Mr. Mark
Phythian and also the assistance of Dr. Wei Xiang during this project. Their help and

guidance have been invaluable over the last year.

I would also like to thank the support of enumerable friends and family who have kept
me sane and motivated over the last four years. In the words of Matthew Reilly - Never

underestimate the power of your encouragement.

KEVIN STARK

University of Southern Queensland

November 2006

Contents

Abstract| i
|Acknowledgments| iv
|[List of Figures| xi
List of Abbreviations xiii
|Chapter 1 Introduction| 1
[I.1 Project Outline| 1

.2 Overview of the Dissertationl 1
|Chapter 2 Background| 3
2.1 Chapter Overview| 3
2.2 Robot Applications and Designs| 3
[2.2.1 Cartesian manipulators L. 4

[2.2.2 Articulated manipulators| 4

2.3 USQ Modular Robot History| 7

CONTENTS vi
2.4 Controller Area Network (CAN)| 8
241 Features 8

[2.4.2 Physical Layer and Hardware 9

2.4.3 CAN Message Types o i 10

2.5 Chapter Overview| e 11
[Chapter 3 USQ Modular Robot| 12
[3.1 Chapter Overview| e 12
3.2 Distributed Control Modules 12
2.1 DC Motor Control Modulel 13

[3.2.2 Stepper Motor Control Module 14

|3.2.3 Pneumatic Proportional Control Module|. 15

|3.2.4 Pneumatic Two-Way Valve Controller, 16

13.2.5 Sensor Module! oo 17

8.2.6 Master Modulel oo o 18

[3.2.7 Prototype Testing and Simulation| 18

[3.2.8 Effect on Project Objectives 19

[3.3 Summaryl 21
|Chapter 4 CAN Protocol 22
4.1 Chapter Overview| o e 22

CONTENTS vii

4.2 Current CAN Implementation/. 22
4.2.1 AN Pack r TE .« e 22

4.3 Proposed Data Frames oL 24
4.3.1 Common Elements 24
4.3.2 _DC Motor Control Module Data Framel 25
[4.3.3 Stepper Motor Control Module Data Frame 25
|4.3.4 Pneumatic Proportional Control Module Data Frame 26
|4.3.5 Pneumatic Two-Way Control Module Data Frame| 26

4.3. nsor Module Data Framel 27

4.3.7 Master Module Data Framel 27

M4 Summary e e e e 28
|Chapter 5 Project Methodology| 29
[5.1 Chapter Overview| it 29
5.2 General Requirements| L o oo 29
5.3 Implementation Considerations 30
[5.3.1 Target Platform| 30
[5.3.2 Programming Language] 30

5.3.3 PC — CAN Hardware Interfacel. 31

5.4 CAN Interface Layer| o 32

[5.4.1 Purpose 32

CONTENTS viii

[5.4.2 Initial Design: Virtual COM Port Interface, 33

[5.4.3 Final Design: USB 2.0 Interface 35

4.4 ANPack lassl e 36

5.5 Virtual Robot Model (VRM) Layer 38
[5.5.1 XML configurationl oo 39

5.6 Summary e e 40
|Chapter 6 Performance Analysis and Testing] 41
6.1 Chapter Overview| i 41
6.2 Testing Procedures| 41
6.3 Unit Testing|. o 42
6.3.1 HexConverter Unit Testl. 42

6.3.2 CANPacket Unit Testl. 44

6.3.3 BitFilter Unit Testl. 46

6.4 Integration Testing| L 48
|6.4.1 MRModel Integration Test| 48

6.5 Chapter Overview| 49
|Chapter 7 Implementing the Program in Future Projects| 50
[7.1 Chapter Overview| 50

[7.2 Hardware Configuration| 50

CONTENTS ix

7.2.1 _Lawicel CANUSB Driver Installationl. 50

[7.3 Software Configuration|, 51
7.3.1 NET Frameworkl 51

(3.2 Visual Studio 2005/ 51

[7.4 XML Robot Configuration|. 52
[7.4.1 Defining Nodes| 53

[7.4.2 Defining Ports| o 54

[7.5 Sample Program| o 55
[7.6 Summaryl 57
[Chapter 8 Conclusions and Further Work| 58
8.1 Achievement of Project Objectives 58
R.2 Further Workl 59
nclusionl L Lo 60
References 62
|Appendix A Project Specification| 65
A1 Tssue A - 27 March 2006/ o 65
|A.2 Issue B - 15 August 2006| L. 65
|Appendix B System Diagrams| 68

B.1 System Modelo 69

CONTENTS x
[Appendix C Source Code Listing 70
Cd _Contents o 71
C.2 BitFilter.csl. e e 72
C.3 _CANPacket.csl. e 76
C.4 CANUSB.csl. o . o e e 81
IC.5_HexConverter.csl 88

6 Log.CS|. o e 90

(C.7 _MBModel.cCsl v v v v i e e e 92
C.8 Node.csl 98
C.9 Port.csl 103
|Appendix D Sample Program| 106
DI OVEIVIEW .« ¢ v v v v e e e e e 106
|D.2 Sample XML Configuration File| 107
ID.3 Sample Program Listing o 110
ID.4 Console Output| 112
[D.5 Run-Time Logl 113

List of Figures

2.1 A Cartesian manipulator.| 4
2.2 An articulated manipulator. o o000 5
2.3 The selectively compliant assembly robot arm (SCARA) manipulator., . 5
2.4 A spherical manipulator. oo 000 6
2.5 A cylindrical manipulator..o o000 o000 6
2.6 Rod component of the Modular Robot’s mechanical structure.|. 7
2.7 Connector component of the Modular Robot’s mechanical structure. . . 8
2.8 Typical embedded CAN bus configuration 10
2.9 Standard CAN data framel 0o 11
[2.10 Remote CAN request frame.. 11
3.1 DC motor control module. L 14
|3.2 Stepper motor control module.o 15
[3.3 Pneumatic proportional control module.| 16

|3.4 Pneumatic two-way valve controller| 17

LIST OF FIGURES xii

3.5 Sensormodule) oo o 17
Master module. 18
[3.7 Prototype testbed for the distributed control modules.| 19

3.8 Prototype communication interface developed by Francois Hoffman (2005).| 20

4.1 Breakdown of a Proportional Pneumatic CAN packet message. 23
[5.1 The Lawicel CAN232 and CANUSB adapters.|. 32
5.2 CAN Interface layer design using the COM port.| 34
[5.3 Message delay times using the serial COM port interface. 35
[5.4 Message delay times using the USB DLL interface.| 37
5.5 Virtual Robot Model (RVM) layer structure| 39
[7.1 Sample XML node and port declaration showing important elements.| . 54
[7.2 Data field showing example filter strings. 55

7.3 Set() and Get() commands.| L. 56

List of Abbreviations

Abbreviation
CAN

PWM

XML

DLL

GUI

Explanation

Controller Area Network.
Pulse Width Modulation
Extensible Markup Language
Dynamically-Linked Library

Graphical User Interface

Chapter 1

Introduction

1.1 Project Outline

The USQ Modular Robot is a continually evolving project which aims to develop a
complete robot system from a set of basic components. Currently, the main components
of the Modular Robot system are a set of basic mechanical components, and a set of

distributed controllers linked by a Controller Area Network (CAN) bus.

The aim of this project has been revised due to functionality issues with the distributed
controllers and is now based around providing a real-time communication link to the
CAN bus. The specific objectives are to develop guidelines for the CAN message
protocol used by the Modular Robot and to develop a PC based message handling
program to simplify the control of the robot. This software project is an extension
of research undertaken by Francois Hoffman (2005) in the area of low cost distributed
control. Much of the content in this report is based on the analysis and understanding

of his work.

1.2 Overview of the Dissertation

This dissertation is organized as follows:

1.2 Overview of the Dissertation 2

Chapter 2 describes the general background of robotics and control systems.

Chapter 3 describes the distributed control system of the Modular Robot and its

current operation.

Chapter 4 details the application of the CAN bus to this project and its current

limitations.
Chapter 5 describes the design of the software interface as developed by this project.
Chapter 6 shows the testing procedures used on the program and the results.

Chapter [7 details the operation of the communication interface and how it can be

integrated into future projects.

Chapter 8 concludes the dissertation and suggests further work in the kinematics and

human interface areas of the Modular Robot software.

Chapter 2

Background

2.1 Chapter Overview

This chapter introduces the general concepts and designs of robots in industrial environ-
ments, and the history of the USQ Modular Robotdevelopment. A brief introduction to
the concept of a CAN bus is also described, which forms the backbone of this project’s

development.

2.2 Robot Applications and Designs

There are a number of basic robot manipulator design configurations in production
today which can be mixed to achieve almost any type of manipulator imaginable. The
two key designs are Cartesian and articulated manipulators with the minor ones being
the SCARA configuration, the spherical configuration and the cylindrical manipulator.
The two key designs are described below and each type of manipulator is shown in
Figures2.1/to2.5. While these designs are primarily for industrial robot situations, they

also make up the basic joints and connections for almost any type of robot application.

2.2 Robot Applications and Designs 4

d.‘
e

s [:]: FEZ L L LTI

Side view Top view

Figure 2.1: A Cartesian manipulator.

Source: (Craig 2005, p. 234)

2.2.1 Cartesian manipulators

Cartesian manipulators are one of the simplest robotic configurations to design and
control because their three primary joints are mutually orthogonal (see Figure 2.1).
They are most often seen in large scale industrial situations which require heavy loads
and/or fine precision. The major limits of Cartesian manipulators however is that the

entire work area of the robot must be inside the physical robot structure.

2.2.2 Articulated manipulators

Articulated manipulator are very similar to a human arm in that they use elbow and
wrist joints to reach out from a center base structure (see Figure 2.2). They have
the advantage over Cartesian manipulators in that they can be mounted at a central
location in the workplace and ‘reach out’ to the surrounding areas. They are best suited

for small work areas that do not contain extremely heavy loads.

2.2 Robot Applications and Designs 5

Side view Top view

Figure 2.2: An articulated manipulator.

Source: (Craig 2005, p. 235)

.

[_I 6, v

Eogtey (Ce)

Side view Top view

Figure 2.3: The selectively compliant assembly robot arm (SCARA) manipulator.

Source: (Craig 2005, p. 236)

2.2 Robot Applications and Designs 6

Side view Top view

Figure 2.4: A spherical manipulator.

Source: (Craig 2005, p. 236)

* | %

Side view Top view

Figure 2.5: A cylindrical manipulator.

Source: (Craig 2005, p. 237)

2.3 USQ Modular Robot History 7

Figure 2.6: Rod component of the Modular Robot’s mechanical structure.

2.3 USQ Modular Robot History

The original Modular Robot development was proposed by Mr. Mark Phythian in
2001 and undertaken by Lake Teoh at USQ (Teoh 2001). The requirements at that
stage were to develop a minimal set of mechanical components that could be connected
together to form a simple robotic structure. The key mechanical components developed

by Lake Teoh are the rod and connector shown in Figure 2.6/ and Figure 2.7.

A centralised control network was also developed for the Modular Robot by Markus
Billerwell (2001). This used a single master processor that could control various motors,
sensors and actuators using a number of pluggable “cards”. To make this system more
user-friendly, a 3D graphical interface was developed that would allow the user to
manipulate a virtual model of the robot which would send commands to the on-board
computer and physically replicate the movements in real-time (Scouller 2002). While
both of these systems were working, the centralised controller was a very complicated
system to set up as there were often large numbers of wires required to fully connect

the external motors and actuators to the master processor.

Recent work by Francios Hoffman on the Modular Robot has resulted in a distributed
control network which consists of a set of basic motor, actuator and sensor modules.
The modules can be attached to any part of the robot structure which requires control.
They can then be connected together via the CAN bus which completes the distributed

network.

Concurrent work to this project on the Modular Robot has been in the area of devel-
oping a real-world application for the Modular Robot system. It is expected that this
development will result in a configurable walking robot structure that can be used to

further extend the research possibilities of the Modular Robot development.

2.4 Controller Area Network (CAN) 8

Figure 2.7: Connector component of the Modular Robot’s mechanical structure.

2.4 Controller Area Network (CAN)

2.4.1 Features

The CAN system was designed by Robert Bosch GmbH in the late 1980s as a re-
liable high-speed communication network for use in motor vehicles. It is essentially
an advanced serial bus system that efficiently supports distributed control systems
(MicroController.com 1999). The main advantages of the CAN protocol in automotive

and robotic applications as defined by MicroController.com (1999) are as follows:

e Low cost - It is a fast serial bus with only two wires which gives it a good price/per-
formance ratio. There are also a large number of controllers and transceivers

available, mainly driven by high volume production in the automotive market.

e Reliable - Sophisticated error detection and error handling mechanisms results
in high reliability transmission. Erroneous messages are detected and repeated
while system-wide data consistency is maintained as every bus node is informed
about an error. Faulty nodes automatically withdraw from bus communication
and the standard twisted pair wires give the physical bus high immunity to elec-

tromagnetic interference.

2.4 Controller Area Network (CAN) 9

e Real time communication - Maximum data rate of 1MBits/s on a 40m bus length,
while still capable of maintaining about 40kBits/s on a 1000m bus. Low latency
between transmission request and actual start of transmission. Priority based
messages to ensure that the most important message will win arbitration without

losing any bus time.

e Flexible operation - Every node is able to access the bus individually and without
delay. There are no physical addresses assigned to the nodes which means that any

number of nodes can be added or removed without affecting the communication.

e Multicast / Broadcast capable - Messages are not identified by address or des-
tination, but rather by priority and data contents. Messages are received by all
nodes on the bus and can be used by none, one, many or all nodes on the network

simultaneously.

e [SO standard - The CAN protocol has been accepted by the International Or-
ganization for Standardization (ISO) who have published two versions of CAN
standards. I80-11898 for high speed applications and IS0-11519-2 for low speed

applications.

2.4.2 Physical Layer and Hardware

Implementing a CAN bus involves a number of layers which may be dependent on the
individual application at hand. At the lowest level is the physical layer medium which
must be chosen so that it is able to transmit the “dominant” and “recessive” bit states.
The next layer involves a CAN transceiver which drives the physical layer using data

supplied by the next higher layer again - the CAN controller.

The most simplistic and common implementation is shown in Figure 2.8 from Micro-
Controller.com (1999). The physical layer in this case is a twisted pair of wires. The
push-pull voltage system on a twisted pair of wires is an extremely effective prevention
against electromagnetic interference on the bus. There are a large number of cheap
and effective CAN controller and transceiver chips on the market today as found by
Hoffman (2005). Upper market PIC modules and other embedded processors usually

offer a built-in CAN controller which requires only the use of a CAN transceiver.

2.4 Controller Area Network (CAN) 10

Node A Node B
Application
€9 e.g.
Host-Controller EOC166| C167CR
orC515C| o 0 0
CAN-Corntroller [81cox| CAN (more
.4 Tt nodes)

L] ¥
CAN-Transceiver ﬁ ﬁ
CAN-Bus ®o<£<!>oo<l>4>o@

Figure 2.8: Typical embedded CAN bus configuration showing layer segmentation.

source: MicroController.com (1999)

2.4.3 CAN Message Types

The CAN protocol specifies 4 different message types or “frames”:

Data Frame: The data frame is the most common message on the CAN bus as it is

used by nodes to broadcast new information.

Remote Frame: The remote frame is used to request specific information from the

CAN bus.

Error Frame: An error frame is generated by all nodes when a bus timing error is

detected.

Overload Frame: The overload frame is largely redundant on modern CAN systems
as the majority of CAN controllers are more than capable of handling the bus

traffic.

The data and remote frames have very similar format as can be seen in Figures 2.9 and
2.10. The main components in the message are the arbitration field, control field, data
field, and CRC field. The arbitration field defines the message contents, and is used to
determine the priority of a message when multiple nodes are accessing the bus. The
control field contains the data length property, which specifies the number of bytes to
follow in the data field. The data field is where the data and remote frames differ in

specification. In the data frame, the data field contains zero to eight bytes of data as

2.5 Chapter Overview 11

Abitration ok
Field 7
Cortinl End of
Field Diata Field R Field Frame

N 1
+ cre A Moy

Startof RTER. Delimiter Delimiter
Frarme

Figure 2.9: Standard CAN data frame. source: (kvaser, 2005)

Abitration sk
Field Contwl End of
Field CRC Field Frare

[I o
A + crc A Mk

Start of ETE Delitniter De livniter
Frame

Figure 2.10: Remote CAN request frame. source: (kvaser, 2005)

specified by the control field. In the remote frame however, there is no data field and
the control field specifies the number of bytes it expects in response. Also set in the
remote frame it the RTR bit after the arbitration field. This bit is set as passive in
a remote frame to ensure that if a node broadcasts the requested information at the
same time as the request, the data frame will win arbitration. The CRC field is a 15-bit

checksum calculated on most parts of the message to ensure the message is received

properly.

2.5 Chapter Overview

Although the mechanical components developed by Lake Teoh are very basic and prim-
itive, they do form the basic mechanical components required to construct any or all of
the robot designs in Section 2.2, The movement and control for each of the robot joints
is made possible by the distributed control modules developed by Francois Hoffman,
and the communication throughout the robot is based on the CAN protocol. This leads

to the focus of this project which is in the area of software control.

Chapter 3

USQ Modular Robot

3.1 Chapter Overview

This chapter outlines the distributed control system of the Modular Robot and examines

the current operational capabilities of the distributed modules.

3.2 Distributed Control Modules

The six modules developed by Francois Hoffman are designed to be completely inde-
pendent from each other and are able to control any type of motor, actuator or sensor
commonly used in robotics. Each module has its own microprocessor and communica-
tion interface, and also has a number of specialised I/O ports depending on its type
and purpose. The six modules are as follows and are described in more detail in the

following sections.

1. DC motor control module;
2. Stepper motor control module;
3. Pneumatic proportional control module;

4. Pneumatic two-way valve controller;

3.2 Distributed Control Modules 13

5. Sensor module;

6. Master module;

The microprocessor chosen by Francois Hoffman for each of the modules was the
PIC16F88. This processor, coupled with the MCP2510 CAN controller provided all of
the I/O and communication requirements while still being a low cost setup (Hoffman

2005, p. 10).

Currently, the PIC code running in each of the modules is only in the very basic
prototype stage. Due to the lack of software documentation provided by Francois
Hoffman, a walk-through of the original assembly code was performed for each of the

modules to determine the current capabilities.

3.2.1 DC Motor Control Module

The DC motor control module is designed to be able to control a standard Direct
Current (DC) motor using Pulse Width Modulation (PWM). The generic prototype
circuit board is shown in Figure [3.1. The hardware features of this module are as

follows:

e PWM to allow variable speed control of the motor;

e H-bridge circuit design that can operate in forward, reverse, brake or free spin

mode.

e Two analogue inputs for position or speed measurement which can also be con-

figured as digital I/O if such position or speed measurements are not required,;

e Two digital I/O ports for home or end stop sensors;

Analysis of the assembly code for the DC motor control module has found that Francois
Hoffman outlined two main modes of operation. In SPEED mode, the module could
be given a set speed and direction. It would maintain that SPEED until the next

command was received. In POSITION mode, the module could be given a position in

3.2 Distributed Control Modules 14

Figure 3.1: DC motor control module.

which to move to and a maximum speed and it would determine the direction necessary

to achieve that position.

3.2.2 Stepper Motor Control Module

The stepper motor control module has similar purpose and features to that of the
DC motor control module. The circuitry and output control however, are designed
specifically for a stepper motor. Speed and direction of the motor are controlled using
a half-stepping bit pattern (Hoffman 2005, p. 36). The generic prototype circuit board
for the stepper motor controller is shown in Figure 3.2l and the hardware features of

this module are as follows:

e Bit stepping pattern to precisely control speed and direction of the motor;

e Two analogue inputs for position or speed measurement which can also be con-

figured as digital I/O if such position or speed measurements are not required;

e Two digital I/O ports for home or end stop sensors;

The software operation of the stepper motor control module is very similar to that

of the DC motor. While the same POSITION and SPEED modes are defined in the

3.2 Distributed Control Modules 15

Figure 3.2: Stepper motor control module.

assembly code, current testing using a range of different values has not been able to

produce movement from the stepper motor.

3.2.3 Pneumatic Proportional Control Module

The pneumatic proportional control module is designed to allow the control of four
valves to control two actuators. This allows the two pneumatic actuators to be con-
trolled either fully in or out, or with the appropriate feedback the actuators can be
adjusted to any position in between. The generic prototype circuit board for the pneu-
matic proportional controller is shown in Figure 3.3 and the hardware features of this

module are as follows:

e Two analogue ports available for linear transducers as positional feedback;

e Two digital I/O ports for home or end stop sensors;

The software currently implemented in the proportional pneumatic module only allows
allows control over each of the valve outputs. While it is possible to set and query
individual valves, the software does not broadcast the analogue value of either positional

ports or the end stop sensors.

3.2 Distributed Control Modules 16

Figure 3.3: Pneumatic proportional control module.

3.2.4 Pneumatic Two-Way Valve Controller

The pneumatic two-way valve controller is designed to allow the control of up to four
pneumatic valves. This module differs from the proportional controller by only having
four end limit switches, and thus can only operate the attached actuators in fully open
or fully closed mode. The generic prototype circuit board for the pneumatic two-way
valve controller is shown in Figure 3.4 and the hardware features of this module are as

follows:

e Four digital I/O ports for home or end stop sensors;

e One analogue input for system pressure if required.

The control and functionality of the two-way valve controller is the same as that of
the proportional controller at this stage. The individual valve controls can be set and
queried by the CAN bus, but none of the digital I/O ports or the analogue input can

controlled or queried by external sources.

3.2 Distributed Control Modules 17

Figure 3.4: Pneumatic two-way valve controller.

Figure 3.5: Sensor module.

3.2.5 Sensor Module

The sensor module is designed to allow the input or output of up to 9 signals. The
ports can be configured individually as required, giving versatility for any situation.

The generic prototype circuit board for the sensor module is shown in Figure

Due to the wide range of I/O configurations capable of the sensor module, Francois
Hoffman has only implemented a single analogue port which can be queried by the
CAN bus. A second digital port has also been implemented in software to send a

command to the DC motor module when it is triggered, but cannot be queried by a

3.2 Distributed Control Modules 18

Figure 3.6: Master module.

status request message from the CAN bus.

3.2.6 Master Module

The master module is designed to act as a local monitor of the system to ensure that the
nodes are operating properly in the current environment. The master module features
five DIP switches that can be used to select modes of operation or other settings.
Two analogue and two digital inputs are available to measure environment settings or
provide emergency interrupts. The prototype circuit board for the master module is

shown in Figure

3.2.7 Prototype Testing and Simulation

To aid in the display, simulation and testing of the distributed modules, Francois Hoff-
man attached them to a sheet of plywood. The individual modules were then connected
to a variety of motors, sensors and LEDs to simulate outputs. A photo of the setup
is shown in Figure 3.7. The only external connections required are the CAN bus and
a power supply. Power is distributed through the centre PCB of the testbed, and can

accommodate up to three different voltages.

3.2 Distributed Control Modules 19

Figure 3.7: Prototype testbed for the distributed control modules.

When 5V power was connected to the modules as specified in the report and marked
on the modules (Hoffman 2005, p. 22); the CAN bus operation was very unreliable
and often reported errors without an apparent cause. Testing the Voo pin of the
PIC16F88 processor and the MPC2551 CAN transceiver found that the input voltage
was only 3.4V rather than the required 5.0V. This voltage drop was caused by the power
regulator on each of the modules. The LM340 is not able to supply a regulated 5.0V
output when its input voltage is only 5.0V. The data sheet for the LM340 specifies
that the minimum input voltage required to maintain regulation is 7.5V (National

Semiconductor 2003).

For the purpose of this project, the sensor, master, proportional and two-way pneumatic
modules were run on a voltage source of 8.0V —10.0V to minimise heat. The two motor
control modules were attached to a minimum 15.0V supply to ensure that the motors

were running at sufficient speed for testing.

3.2.8 Effect on Project Objectives

The lack of software capabilities in the distributed controllers was the key factor that

required the change of specifications for this project. The original objectives for this

3.2 Distributed Control Modules

wi| CAN Serial Interface

File Settings
e [Masks and Fiers ™ - g ffer 0 || R Buffer 1
Master = Mask [7[7 [ooofooofomt | | Mask [3[3 1 [t fom
aienieay 111 § ooo Fiter 0 7T Jooofooojoon | | Fiter2 [[7 117 Jooo oo
- Notes Fiter 1|1 | 0 {oon {ooo oot Fiter 3 [{1 111|000 {oo1
Meszages are & bytes lang 1EC18 Filte"" 01 {111 {000 (010
Orly standard identifiers are used Fiter 3 [|1 {111 |00 o1
_ Broadeast Message Buffer | | Directed Message Buffer

- Meszage Destination

(= Emergency Stap

™ Broadcast .
; i~ Directed Meszage-
(@ Directed ~ ToMaster 7~ Toany other hode iF'neumatic Two-way Controller __v_j ID _:j
Reset
X " Type o " Type 2 " Type3d

- Can Meszage

B1

fooooouo |
1

03

fooooauao |
o0 |

D4

Jooonocn |
00 |

b5

Jooouun |
=

00000 '
|001 00000 |0oogo0o0 |
|20 et

Jooauoono |
| {00 |

fooooouo |
= _

Jooaooooo |
o0 | '

o

— Communication

Zet Wersion i to Send ~Result Yindow
MutD DLC O 1 2 3 4 5 B T £5C18204CFB3344556638 [OR]
Fallbne £54192000223344556623 [CR]
Poll &1 Iﬁa‘ fs_ Joo oo foofoo oo oo o0 £5018200E223344556620 [OR]
AN Status £4C18200A223344556618 [CR]
Auto Poll b £481820000080FES5CCL0 [CR]
st Poll OFF : Fiead Statusl £441920FFFFFFEFSSE603 [CR]
— z[CR]
Timestamp O ‘ | CAN R FIFD queue ful 4C182004223344556618 [CR]
st ot e ‘CAN T FIFO gueue ful z[CR]
M Error i arning [CR]
Set Speed and Diata Overun [CR]
Open Port Noh uzed
_CTo;e_Po_rt_ Error Passive
Arbitration Lost
Bus Ermor

Figure 3.8: Prototype communication interface developed by Francois Hoffman (2005).

project were to develop positional control capabilities for an entire robot structure.
However, that depended on each of the motor and pneumatic modules being able to
achieve positional control over the individual joints and linkages that they would be
attached to. The level of kinematic control and automation originally planned for the
project required a large amount of feedback from the modules which has not been

implemented.

This lack of complete software has restricted the level of control and therefor testing and
demonstration attainable by this project. The current project objectives are centered
around developing a generic communication interface that can be expanded upon at
a later stage to achieve kinematic control. The primary objective of this project is to
develop a method of talking to the robot with a simpler interface than the program

developed by Francois Hoffman in Figure [3.8

3.3 Summary 21

3.3 Summary

The overall hardware features present in the distributed control modules is very diverse.
The hardware should be able to manipulate the various types of robot structures capable
of the connector and rod components. The software currently present in the modules
is very basic and poorly documented however and it is expected that a large amount
of work will be required to make the assembly code as modular and generic as the
hardware itself. This has caused the project objectives to be revised and refocus on

providing a service that can be used by future developments.

Chapter 4

CAN Protocol

4.1 Chapter Overview

This chapter analyses the current CAN bus specifications and capabilities provided by
Francois Hoffman and proposes a standard CAN data frame for each node as a starting

point for future implementations.

4.2 Current CAN Implementation

4.2.1 CAN Packet Structure

The general structure of a CAN message is shown in Figure [4.1. This packet example
shows a message directed at a proportional pneumatic node and how the individual

ports are mapped into the data field.
The 11-bit identifier is partitioned into the following fields as specified by Francois Hoft-
man (2005, p. 67):

Bit 10 9 8 7 6 5 4 3 2 1 Bit 0
BRD DTM NTNZ2 NTN1 NTNO NIN2 NIN1 NINO MT2 MTA1 MTO

4.2 Current CAN Implementation 23

Directed | Node Message
Ito\Master Type |Node# Typeg
Broadcast

o] 0] 200 | 001 | 001 |binary)

Data
Y
/|,109 800 OB| 00 00 00 00 00 00 |(hex)
11 bit Identifier

Data Length (0-8)/ 0000 1011

il

Specific bits

(binary)

Figure 4.1: Breakdown of a Proportional Pneumatic CAN packet message.

BRD - Broadcast bit.
This bit is set to signal a broadcast message. When BRD is set, DTM must be

cleared.

DTM - Directed to Master
This bit signals that the message is directed to the master node. When DTM is
set, the NTN([2:0] and NIN[2:0] bits specify the source of the message rather than

the destination.

NTNJ[2:0] - Node Type Number
The NTN bits specify the destination node type number. The Table 4.1/ shows

the bit and node configurations for this system:

NIN|[2:0] - Node ID Number
The node ID number is the numerical index of the node. Each node of a specific

type has a unique NIN otherwise the message will be accepted by multiple nodes.

MT][2:0] - Message Type.
Application specific message type depending on the programming of the individ-

ual node. All nodes recognise a message type of zero to be a status request.

4.3 Proposed Data Frames 24

NTN2 | NTN1 | NTNO | Node Type
0 0 0 Not used
0 0 1 DC Motor
0 1 0 Stepper Motor
0 1 1 Pneumatic Two-Way
1 0 0 Pneumatic Proportional
1 0 1 Sensor
1 1 0 Not used
1 1 1 Master

Table 4.1: Allocation of Node Type Numbers to nodes.

The current layout of the data field as specified by Francois Hoffman is as follows:

[7:0] [7:01 [7:0] [7:0] [7:0] [7:0] [7:0] [7:0]
DLC DBO DB1 DB2 DB3 DB4 DB5 DB6 DB7 CRC

DBO - Data byte 0
The high nibble of this data byte is occupied by extra message type bits as
specified by Francois Hoffman (2005, p. 67).

DBJ1:7] - Data bytes 1 to 7

These bytes are node specific and are further explained in the following sections.

4.3 Proposed Data Frames

4.3.1 Common Elements

The design of the data bytes should be to ensure that similar types of information are
in the same data bytes for all of the nodes. For example, any node that operates in
a specific state or mode should put this information in the low nibble of data byte 0

(DBO[3:0]). Where possible, node specific values have been placed in data bytes 1 to

4.3 Proposed Data Frames 25

3, Digital I/O ports have been placed in data byte 4, and generic analogue I/O has
been placed after the digital I/O (DB[5:71).

4.3.2 DC Motor Control Module Data Frame

[7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0]
Mode Speed Direction Position Digital IO | Analoge1 | Analogue2
DBO DB1 DB2 DB3 DB4 DB5 DB6 DB7

DBO - Data byte 0, low nibble:

Current state or mode.

DB1 - Data byte 1.
SPEED value for the motor.

DB2 - Data byte 2
DIRECTION for the motor.

DB3 - Data byte 3

POSITION for the motor to travel to or the current position of the motor.

DB4 - Data byte 4

Digital I/O configured as home or end stop sensors.

DB5 - Data byte 5

Analogue port 1 value if not configured for speed or position.

DB6 - Data byte 6

Analogue port 2 value if not configured for speed or position.

4.3.3 Stepper Motor Control Module Data Frame

[7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0]
Mode Speed Direction Position Digital IO | Analoge1 | Analogue?2
DBO DB1 DB2 DB3 DB4 DB5 DB6 DB7

4.3 Proposed Data Frames 26

The stepper motor should have the same data byte interface to simplify programming

and communication between nodes.

4.3.4 Pneumatic Proportional Control Module Data Frame

[7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0]
Mode Valves Position1 | Position2 | Digital IO
DBO DB1 DB2 DB3 DB4 DB5 DB6 DB7

DBO - Data byte 0, low nibble:

Current state or mode.

DB1 - Data byte 1, low nibble:
Pneumatic VALVE settings for the node.

DB2 - Data byte 2
POSITION value from analogue input 1.

DB3 - Data byte 3
POSITION value from analogue input 2.

DB4 - Data byte 4

Digital I/O configured as home or end stop sensors.

4.3.5 Pneumatic Two-Way Control Module Data Frame

[7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0]
Mode Valves Digital IO | Analogue1
DBO DB1 DB2 DB3 DB4 DB5 DB6 DB7

DBO - Data byte 0, low nibble:

Current state or mode.

DB1 - Data byte 1, low nibble:
Pneumatic VALVE settings for the node.

4.3 Proposed Data Frames 27
DB4 - Data byte 4
Digital I/O configured as home or end stop sensors.
DB5 - Data byte 5
Analogue input when configured as pressure sensor or other analogue input.
4.3.6 Sensor Module Data Frame
[7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0]
Mode Digital IO | Analogue1 | Analogue?2 | Analogue3 | Analogued | Analogue5 | Analogue6
DBO DBA1 DB2 DB3 DB4 DB5 DB6 DB7
DBO - Data byte 0, low nibble:
Current state or mode.
DB1 - Data byte 1.
Digital I/O ports as configured by developer.
DBJ2:7] - Data bytes 2 - 7
Analogue ports as configured by developer.
4.3.7 Master Module Data Frame
[7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0]
Mode DIP Analogue1 | Analogue2 | Digital IO -
DBO DB1 DB2 DB3 DB4 DB5 DB6 DB7

DBO - Data byte 0, low nibble:

Current state or mode.

DB1 - Data byte 1.

DIP switch settings as configured on the module.

DB2 - Data byte 2

Analogue port 1

4.4 Summary 28

DB3 - Data byte 3

Analogue port 2

DB4 - Data byte 4
Digital I/O configured as required.

4.4 Summary

This chapter has outlined the basic CAN protocol that has been developed by Francois
Hoffman. While the design of the identifier does not match the general idea of the CAN
network (message rather than node based identifiers), Francois Hoffman has proven the

design works (Hoffman 2005, p. 69).

The data frames specified are not final designs that must be used in every CAN module
developed for the robot, but rather general recommendations to help the inter-node
communication. If the general design of the packets are followed, the embedded code

in each of the nodes can be made much more modular.

Chapter 5

Project Methodology

5.1 Chapter Overview

This chapter examines the various approaches that may be used to develop each layer

of the interface and the implementation options available to the entire project.

5.2 General Requirements
The key requirements for this Modular Robot communication interface are as follows:

Speed: The interface must be able to operate to some degree as a real time system.

Simplicity of use: The interface must reduce the complexity of the CAN bus opera-
tion and communication so that the potential of the Modular Robot project can

be fully realised.

Configurable: The programming interface must be able to reflect the structure of the
robot it’s controlling. A simple method of configuring the modules connected to
the CAN bus is required. A method of exporting and importing configuration

information is required also required.

5.3 Implementation Considerations 30

Expandable: New features and changes in the Modular Robot CAN bus specifications
must be easily replicated in the code. This requires a simple and modular code

structure with appropriate documentation.

5.3 Implementation Considerations

5.3.1 Target Platform

The key considerations when determining the target platform for this project were
usability, availability and hardware support. The available development platforms were
one of many Linux distributions and Windows versions. Taking into account that the
majority of the work on the Modular Robot will not be done by software engineering
majors, the selected platform was Windows XP. XP has the benefit of widespread use

and compatibility with other engineering software.

5.3.2 Programming Language

The original specifications for this project (Appendix A.1) were to develop a very
generic and expandable program that could control the movements of a robot. The im-
plementation language to achieve this also needs to be modern and advanced with easy
interfacing to the communication hardware. The three main language requirements con-
sidered for this project were Object-Oriented, simple Graphical User Interface (GUI)
development, and an advanced Integrated Development Environment (IDE) to aid in

documentation and project management.

Given the language requirements above, there were a small number of development

languages available. The relative merits of each are as follows:

C++4: The C++ language is a very efficient and stable O-O language with a number
of compilers available for different operating systems. Hardware interfacing is
dependent on the operating system which can make platform changes difficult in

the future. Developing GUIs can be very tedious as a lot of code is required to

5.3 Implementation Considerations 31

achieve full user interface functionality. No IDEs are readily available, however
the MAKE utility provided under Linux and Cygwin can be used to simplify source

code management to some degree.

Java: The java language is a platform independent O-O language which runs in a
virtual machine environment above the operating system. Low level hardware
interfacing can be difficult due to the virtual machine environment. The devel-
opment of GUIs are simplified by the extensive libraries provided. There is a free
IDE available from Netbeans (Netbeans 2006) which would help in documentation

and project structure.

NET: The .NET framework is an multi-language capable development and execution
environment which integrates into the Microsoft Windows operating system.(Microsoft
Developer Network 2006). Hardware interfacing and communication is guaran-
teed. GUI development is very quick and easy due to the drag-and-drop style
of the Visual Studio IDE. While the .NET framework is free and can be down-
loaded from www.microsoft.com, the Visual Studio IDE can be very expensive

for a once-off project development.

Although there are some purchasing costs involved with the Visual Studio.NET IDE,
this option was chosen on the merits of flexibility, functionality and future expansion
for later projects. The .NET environment offers a number of languages which can be
used interchangeably throughout a single project. The .NET language chosen for this
project is C# (C-sharp) as it closely resembles a combination of C++ and Java. It is
expected that the .NET environment will be expanded to provide compatibility with
other operating systems (Deitel et al. 2003) which will give a wide range of platform

and language choices to future developers of the Modular Robot.

5.3.3 PC — CAN Hardware Interface

There were two types of CAN bus adapters available for this project; the Lawicel
CAN232, and the Lawicel CANUSB. The original Modular Robot CAN bus was de-
veloped using the CAN232 adapter which connected to the PCs COM port. Due to

the lack of serial ports on new laptops, the CANUSB adapter was chosen as it has the

www.microsoft.com�

5.4 CAN Interface Layer 32

Figure 5.1: The Lawicel CAN232 adapter (left) and the Lawicel CANUSB adapter (right).

Source: www.can232. com

benefit of being able to communicate with a virtual COM port interface for backward

compatibility with older programs.

5.4 CAN Interface Layer

5.4.1 Purpose

The purpose of the CAN interface layer is to provide a packet buffering and transmission
service to a higher level program. This layer handles the CANUSB communication and

status checking while the CAN messages are being transmitted.

The general structure of the interface layer is shown in Figure 5.2. While this diagram
shows the use of the COM port for data transfer, the structure of the interface using the
USB DLL is very similar and the differences have been explained in Section [5.4.3. This
layer was originally designed to be only one type of communication with the robot and
so the programming interface contains only the very basic commands. Using a layered

approach it is possible to simply swap this CAN interface with another, such as:

e A simulation interface that can be used for debugging, demonstration or other

development purposes.

www.can232.com�

5.4 CAN Interface Layer 33

e A wireless interface to the CAN bus, via a technology such as Bluetooth (Fredriksson

1999).

5.4.2 Initial Design: Virtual COM Port Interface

The initial design of the CAN interface layer used the virtual COM port drivers provided
by Lawicel. These drivers were downloaded from the CANUSB website! and were
installed using default settings. This serial type interface was originally chosen over
the USB driver interface due to its simpler programming style and also to enable the

use of Hoffman’s interface program for comparison during debugging.

The design of the class centered around two threads; a transmit thread (TX) and a
receive thread (RX). The design of the TX thread was a simple loop which continually
polled the TX queue. If a message was waiting to be sent, it would aquire a lock on
the COM port and begin the transmission. The RX thread performed a similar action
but in reverse; it would continually poll the COM port until data was available, then
read the message and add it to the RX queue. The thread design was complicated
however by the operation of the Lawicel COM interface itself which would return a ‘z’
character when a message had been successfully transmitted. This required the TX and
RX threads to be synchronous which increased the dependency on each other to avoid
deadlock situations. The final complication to the design was the need for occasional
status checking of the Lawicel CANUSB device. This required further communication

between the threads to ensure that device was operating properly at regular intervals.

The code that was written for the threads worked reliably and would transfer all mes-
sages with error detection. The code required a large amount of CPU time how-
ever, as the TX and RX threads used while loops when acquiring locks and the
Thread.Sleep() function only to provide delay between polls of the COM port. The
performance was rather erratic with the bulk of messages being transferred with about
a 10 — 200ms delay while others were suffered delays of up to 4 seconds as can be seen

in Figure 5.3l

Lawicel virtual COM port drivers: http://www.canusb.com/cdm/cdm_lawicel.zip

http://www.canusb.com/cdm/cdm_lawicel.zip�

5.4 CAN Interface Layer 34

Virtual Robot Model Layer

CAN Interface Layer

TX Buffer

Virtual COM Port

Software

Hardware

USB

v
CAN Bus

Figure 5.2: CAN Interface layer design using the COM port.

5.4 CAN Interface Layer 35

Message transfer delay times using serial COM port

4.5
4.0 =
.
35
3.0
.
225 S * * *
k) o ¢
8 20 - .
*
15 > *
.
. .
1.0 ?: - ¥ .
. © .
* .
. . .
0.5 1o *—4 > > *
.
* ® . * . * o0 . LIRS ® e, 00,
o %0 . e A_ oo g’... S0t & *® o ,,0.’."’ S é“,’. o ot o0t
0.0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Message Index

Figure 5.3: Message delay times using the serial COM port interface.

5.4.3 Final Design: USB 2.0 Interface

The decision to convert the interface layer to use the USB DLL was primarily to improve
the speed and latency statistics of the message transfer. The redesign of the code also

helped to reduce the CPU intensive tight while loops in the TX and RX threads.

The majority of code had already been written at this time for the virtual robot model
layer. The programming interface for the communication layer could not be changed
because it would also require rewriting large amount of code in other sections of the
program. The original design of the interface already included the TX and RX buffers
which effectively made the two layers very independent and so only the underlying code

in the CANUSB interface required rewriting.

The TX and RX threads, which were essentially separate programs running tight loops,
were replaced with the System.Threading.Timer class. The Timer class could be
configured with a trigger time interval which would call the appropriate function to send
or receive data. The same was done for the error checking operations which now meant

that the read, write and error checking operations were completely independent of each

5.4 CAN Interface Layer 36

other. This removed the need for the complicated synchronisation and communication
between functions. Each Timer callback function simply used the corresponding DLL

function call provided by the Lawicel USB driver.

The decision to use an events and callback functions for the RX buffer also improved
the latency for the entire system. Rather than have a higher layer continually polling
the RX buffer, whenever a message is received by the communication interface it will
place the message in the RX buffer and raise an operating system event. This allows
the higher layer to continue with its normal activity and only check the RX buffer when

a message has definitely arrived.

The final improvement to the CAN interface layer involved adding an emergency or
priority message function that would clear the TX buffer and send the emergency mes-
sage directly to the CAN bus. This has particular importance in a real-time situation
when a critical event occurs. Francois Hoffman implemented a emergency message that

all nodes would respond to in the definition of the CAN bus (Hoffman 2005, p. 63).

As a result of the redesign, the CANUSB class is a very fast and reliable layer as can
be seen in Figure 5.4. The scatter chart now shows that instead of messages taking a
very random time to be sent and received (Figure 5.3), they are now guaranteed to be
completed in less than 50ms(5.4. The scatter plot shows the messages being transferred
in specific time intervals, however this is a side effect of the Windows operating system
only updating the clock every 15ms. The actual values may be dispersed throughout
the time interval. This low latency is very acceptable for real-time applications and
the use of callbacks and events has reduced the CPU load by a factor of 5 on the

development computer?.

5.4.4 CANPacket Class

The CANPacket class is the only common element between all of the layers developed
for this project. It was originally developed from scratch to suit the serial COM port

interface. The underlying structure was redesigned to wrap around the given CAN

2 Asus L3 laptop, 2.4Ghz Pentium 4, Windows XP service pack 2.

5.4 CAN Interface Layer

37

0.050 ~

0.045

CAN transfer delay times using USB DLL

= - G
GBBO BAS D DIMOINID W ONWNS FHAS & G & DWD % SUDOOOD O SHICINNNOTNININNG WHNCIDHINID> HHHOHS B GBS WD SSSNID9000000

0.040

0.035

0.030

0.025

Delay (s)

0.020

0,015

0.010

0.005

0.000

{
public
public
public
public
public
}

5000 10000

15000 20000 25000 30000
Message Index

Figure 5.4: Message delay times using the USB DLL interface.

Listing 5.1: The Lawicel CAN message structure
public struct CANMsg

uint id; //
uint timestamp; //
byte flags; //
byte len; //
ulong data; //

11/29 bit Identifier

Hardware Timestamp (0-9999mS)
Message Flags

Number of data bytes 0-8

Data Bytes 0..7

structure accepted by the Lawicel USB DLL (Listing 5.1). This greatly improved the

simplicity of the code as the data storage mechanism is handled by the Lawicel structure

and the CANPacket class simply handles the interface and data extraction methods.

The CANPacket class performs a large amount of data checking whenever changes occur

to minimise the chance of sending invalid messages to the CAN bus. If the broadcast or

directed to master bits are set, the class automatically clears the other. As bytes of data

are added to the message, the class automatically updates the data length property to

ensure that all significant bytes are sent.

5.5 Virtual Robot Model (VRM) Layer 38

Listing 5.2: Creating nodes from the XML data file. (MRModel.Open() method)
foreach (XmlNode node in root.SelectNodes("node"))

{
try
Node newNode = new Node((XmlElement)(node));
nodes .Add(newNode.Name, newNode);
catch (Exception e)
//MessageBoz.Show("Ezception Thrown");
MessageBox .Show(e.Message);
return -3;
}
}

5.5 Virtual Robot Model (VRM) Layer

The VRM layer is essentially the MRModel class interface. The layer maintains a list of
nodes configures by the robot, and provides access to them using the Get () and Set ()
commands. These commands were chosen to appear familiar to the MatLab commands
of the same name, improving both the simplicity and usability of the interface for

engineers from many disciplines.

An emergency stop function is also provided by the interface which will send the emer-
gency stop command defined in the CAN protocol (Hoffman 2005, p. 67). This has
uses in safety critical application where the program is monitoring the position or en-

vironment of the nodes and needs interrupt the immediate operations.

The structure of the VRM layer is shown in Figure 5.5. The layer is centred around the
MRModel class which maintains a list of nodes. The each of the nodes then maintains
its own list of ports as configured by the XML data file. The code is very modular,
with each class having its own configuration and access methods. For example, when
reading in the XML document, the MRModellayer will select a <node> element from the
document and call the Node constructor passing in the entire XML element as can be
seen in Listing 5.2l

The Node class constructor then takes that XML element and uses the attributes defined
to configure its name, type, ID etc. Then, for each <port> sub-element, it calls the
Port constructor and passes in the XML string. This separates the configuration code
into each of the classes which makes the code very modular and robust. Any changes

to the XML specifications only causes changes in the corresponding MRModel, Node or

5.5 Virtual Robot Model (VRM) Layer 39

High Level Program

Modular Robot
Virtual Model

>

N

Virtual Robot Model Layer

Named virtual fﬁodules: “Nod'eé” L
Ve I "4 ey

Stepper Pneumatic Sensor
R ot Motor Module Module

> ol P bl

/ \\ g Y
d o r Y
= 2 =) g
=% w = w

Named data fields: “Ports”

[1onen]y
v aneA
[neno Jp

paadg
paads

Virtual Robot Model Layer
CAN Interface Layer

Figure 5.5: Virtual Robot Model (RVM) layer structure.

Port class configuration method.

The same theory is applied to the message reception algorithm. When a new status
message is received by the MRModel callback function, it is immediately passed to any
node that has the same type and ID. When the Node class receives the message, it
immediately passes it to all of its ports who decide whether or not it affects them
or not. This follows the principle of object-oriented programming where every object

handles its own data and functionality.

5.5.1 XML configuration

The decision to use XML as a data file was primarily to reduce the amount of coding
required for the configuration of the robot. The original specifications for this project
required a description of more advanced robot kinematics in the data file and so XML
was chosen to simplify the data input code. As XML is a integral part of the .NET
framework, there are large amounts of documentation and support available for XML
input and manipulation in C#. XML has the benefit of being both human and machine

readable as it is a text based language. New elements can be added or removed without

5.6 Summary 40

affecting the operation of the MRModel configuration method.

The main component in the <port> element is the filter attribute. This specifies
where in the CAN status reply message to extract the port value from and also where
to add the value when sending a message. The filter string consists of three parts:
Byte Number, Start Bit and Length of Field. These three properties are formed into
a B:S:L string which the BitFilter class can interpret. There are no limits to how
many ports can be defined for a node, and the filter values can overlap or be the

same as other ports as long as the port name is unique.

5.6 Summary

The program developed by this project achieves simplicity of use objectives from Sec-
tion 5.2l by removing the complicated CAN message structure from the user and offering
simple named ports and nodes instead. The performance objectives were met after the
CANUSB layer was re-designed using the USB DLL driver interface. The configurabil-
ity and expandability criteria have been achieved through the use of standard XML

documents as a data file and configuration tool.

Chapter 6

Performance Analysis and

Testing

6.1 Chapter Overview

This chapter evaluates the performance of the interface program as a real-time system
and identifies the weak spots in the code by subjecting the individual classes and layers

to various user inputs.

6.2 Testing Procedures

The testing procedures undertaken here are unit and integration testing. They are
used to ensure that the individual components themselves are operational and that the
entire program operates as a functions system. While there are far too many possible
data inputs and test conditions to be completely displayed in this report, the main
component and operations are included in the following sections. The complete white-
box testing of the program modules has been undertaken during the code development

to ensure that the system communicates properly with the distributed modules.

Unit testing has been performed on the more independent classes while integration

6.3 Unit Testing 42

Listing 6.1: HexConverter class declaration.
public class HexConverter

{
// Converts a HEX based character (0:F) to its integer walue (0z00:0z0F)
public static UIntl6 ConvertToUInt16(char hexVal);
// Inverts a given string of HEX wvalues. Inverts full byte walues only
public static String InvertHexString(String str);

}

testing has been performed on the entire system. The tests performed are as follows:

Unit Test :

e HexConverter
e CANPacket

e BitFilter
Integration Test :

e MRModel (Covering the Node and Port classes)

6.3 Unit Testing

6.3.1 HexConverter Unit Test

Requirements

The HexConverter class is a simple tool containing two static methods which ma-
nipulate or convert a string of hex characters. The class declaration can be seen
in Listing 6.1. The purpose of the ConvertToUInt16(char) function is to help
decode a string formatted CANPacket into a numerical format. The purpose of the
InvertHexString(string) function isto convert the text representation of a CANPacket

data field into the textual version of the Lawicel CAN packet data field and vice versa.

6.3 Unit Testing

43

Listing 6.2: HexConverter test driver.

// ConvertToUInt16 () function test
Console.WriteLine (
"Char = ’0° Num = " +
HexConverter.ConvertToUInt16(’0’).ToString());
Console.WriteLine (
"Char = 9’ Num = " +
HexConverter.ConvertToUInt16(’9’)
Console.WriteLine (
"Char = A’ Num = " +
HexConverter.ConvertToUInt16(’A’)
Console.WriteLine (
"Char = ’F’ Num = " +
HexConverter.ConvertToUInt16(’F’)
Console.WriteLine (
"Char = ’f°’ Num = " +
HexConverter.ConvertToUInti16(’f’)
Console.WriteLine (
"Char = ’G’ Num = " +
HexConverter.ConvertToUInti16(’G’ Y; // Inwvalid
Console.WriteLine (
"Char = ’#’ Num = " +
HexConverter.ConvertToUInt16(’#’); // Invalid
// InvertHexzString () function test
try
{
Console.WriteLine (
"Input: ’1234567890ABCDEF’ Qutput: " +
HexConverter.InvertHexString("1234567890ABCDEF") + "’");
Console.WriteLine (
"Input: ’qwerty’ Output: ’"
HexConverter.InvertHexString("qwerty") + "’"); // Valid
Console.WriteLine (
"Input: ’123’ QOutput: ’" +
HexConverter.InvertHexString("123") + "’"); // Invalid

}

catch (Exception e)

{
}

Test

Console.WriteLine(e.Message);

To test the various outputs produced by the ConvertToUInt16(char) and InvertHexString(

string) functions, a short test driver was used which called the functions using vari-

ous characters and input strings. This test driver can be seen in Listing [6.2.

Results

The results generated by the test driver are as follows:

Char = ’0° Num = O
Char = ’9’ Num = 9
Char = A’ Num = 10
Char = ’F’ Num = 15

6.3 Unit Testing 44

Char = ’f’> Num = 15
Char ’G’ Num
Char #° Num

]
(@]

]
o

Input: 1234567890’ QOutput: ’EFCDAB9078563412’
Input: ’qwerty’ Output: ’tyerqw’
Invalid HEX string: O0dd number of characters.

This shows that the class is robust under a variety of correct and incorrect inputs.
The InvertHexString() method does raise an exception on invalid data which must
be handled by the calling program. It can also be seen that the InvertHexString()
method does not check that the characters are proper hex values, as this does not

impact the algorithm used by the function.

6.3.2 CANPacket Unit Test

Requirements

The CANPacket class is handled by all layers in this system and is required to present
the information contained within itself in a variety of ways depending on its current
context. The class header is shown in Listing (6.3 and because the number of different
possible input values is quite large, only the basic operations and tests have been
conducted. The main purpose for this class is to be able to extract key values from the

identifier of the message, and provide access to individual bytes of the data field.

Test

The test driver shown in Listing 6.4 was used to show the various inputs and outputs
provided by the class. While only a limited number of tests have been performed here,
the class has been extensively tested during the integration test of the system and the

general debugging process.

6.3 Unit Testing

45

Listing 6.3: CANPacket class declaration.

public class CANPacket

{

// Private data ftelds
private LAWICEL.CANMsg innerMsg = new LAWICEL.CANMsg();

// Class constructors

public CANPacket ();

public CANPacket (CANPacket original);
public CANPacket (LAWICEL.CANMsg original);

// Property accessors

public bool Broadcast{ get; set; }

public bool DirectedToMaster{ get; set; }
public int NodeTypeNumber{ get; set; }
public int NodeIDNumber{ get; set; }
public int MessageType{ get; set; }
public bool RTR{ get; set; }

public int Datalength{ get; set; }

public int this[int index]{ get; set; }
public ulong DatalLong{ get; set; }

// Public functions

public string CreateFromString(string buffer);
public string ToHexString();

public override string ToString();

// Internal (protected) functions
internal LAWICEL.CANMsg LawicelMsg();

Listing 6.4: CANPacket test driver.

CANPacket msg = new CANPacket();

msg.
.DirectedToMaster = false;

msg

msg.
msg.
msg.
.Datalength = 2;

msg

Broadcast = false;

NodeTypeNumber = 1; // DC motor
NodeIDNumber = O0;
MessageType = 0; // Status request

msgl[0] = 0x00;

msg[1 1]
msg[2]

0x11;
0x22; // Automatically increases data length

Console.WriteLine("Message: " + msg.ToString());

Console.WriteLine("Long Data (hex): " + msg.DataLong.ToString("X6")

Console.WriteLine("Data[1] (hex): " + msgl[1].ToString("X2"

))

6.3 Unit Testing 46

Results

The output of the CANPacket test driver is shown below. This is the hexadecimal
representation of the message, which has been adopted as the standard representation
of a CANPacket throughout the system. The second output also shows the difference
between the internal representation of the data to the standard. Whereas the standard
packet display presents the data bytes in numerical order of index from 0 to 7; the
DataLlong property accessor returns a single integer value containing the higher index

data bytes in the most significant digits of the number.

Message: 0403001122
Long Data (hex): 221100

Data[1] (hex): 11

6.3.3 BitFilter Unit Test

Requirements

The BitFilter class acts as a configurable tool to extract information from the data
section of a CANPacket. As such, it must be able to extract or insert a value of any size

from any position in a byte without corrupting other information in the packet. The

BitFilter class header is shown in Listing 6.5

Test

The test driver shown in Listing 6.6/ shows a DC Motor message and how a variety of

BitFilters may be used to extract information from various bit combinations.

6.3 Unit Testing 47

Listing 6.5: BitFilter class declaration.
public class BitFilter

{
// Private data fields
private int byteNumber; // Byte number (0 - 7)
private int bitStart; // Start bit number (0 - 7)
private int numBits; // Number of bits to include (8-bitStart)
// Constructors
public BitFilter (int byteNumber , int bitStart, int numBits);
public BitFilter (string parseString);
// Property accessors
public int ByteNumber{ get; 1}
public int StartBitNumber{ get; I}
public int FieldLength{ get; }
// Public methods
// Eztracts a wvalue from a CANPacket
public int ParseValue(CANPacket msg);
// Adds a value to a CANPacket
public void AddValue(CANPacket msg, int value);
}

Listing 6.6: BitFilter class test driver.

CANPacket msg = new CANPacket();
msg.Broadcast = false;

msg.DirectedToMaster = false;
msg.NodeTypeNumber = Node.DC_MOTOR;
msg.NodeIDNumber = 0;

msg.MessageType = CANPacket.MESSAGE_TYPE_1;
msg.Datalength = 8;

msg.Datalong = 0x7766554433221100;

Console.WriteLine();
Console.WriteLine("Original Message: " + msg.ToString());

BitFilter filterl
BitFilter filter2
BitFilter filter3
BitFilter filter4

new BitFilter("B1:S0:L4"
new BitFilter("B2:S1:L1"
new BitFilter("B3:S0:L8"
new BitFilter("B5:S82:L3"

N

Console.WriteLine(
"Filter 1 - B1:S0:L4 -> Ox" +
filterl.ParseValue(msg).ToString("X2"));
Console.WriteLine(
"Filter 2 - B2:S1:L1 -> Ox" +
filter2.ParseValue(msg).ToString("X2"));
Console.WriteLine(
"Filter 3 - B3:S0:L8 -> 0Ox" +
filter3.ParseValue(msg).ToString("X2"));
Console.WriteLine(
"Filter 4 - B5:82:L3 -> Ox" +
filter4.ParseValue(msg).ToString("X2"));

Console.WriteLine();

6.4 Integration Testing 48

Results

The output of the test driver is as follows. Note that the outputs have been converted

to Hex for comparison with the original message data.

Original Message: 041 8 0011223344556677

Filter 1 - B1:S0:1L4 -> 0x01 % Byte 1: ---- 0001
Filter 2 - B2:S1:L1 -> 0x01 % Byte 2: ---- --1-
Filter 3 - B3:S0:L8 -> 0x33 % Byte 3: 0011 0011
Filter 4 - B5:S2:1L3 -> 0x05 % Byte 4: ---1 01--

This shows that the BitFilter class can handle a variety of valid inputs. The BitFilter

constructor will throw an exception if the B:S:L string is invalid.

6.4 Integration Testing

6.4.1 MRModel Integration Test

Appendix DI shows the configuration files, sample program and output listings used
as a test case for the MRModel class. The output in Appendix [D.5 shows the log file

generated by the CANUSB layer when the test program is run.

Figure 5.4 shows a scatter plot of the time taken to transfer 30,000 individual CAN
packets. The fact that every single message was transfered in under 50ms shows the
outstanding speed and latency times capable of the developed system. The test code
used to produce the 30,000 messages is shown in Listing 6.7. Essentially, the code
uses the two pneumatic modules to count the test LEDs from 0 to 2562. The test was
terminated after about 15 minutes however due to the proportional pneumatic module
turning itself off for an unknown reason. The 30,000 messages transfered during that

time is used as the data for this test.

6.5 Chapter Overview 49

Listing 6.7: MRModel class test driver.
for (int j = 0; j <= O0xFF; j++)

{
for (int i = 0; i <= OxFF; i++)
{
robot.Set("PPO", "valveall", i);
robot.Set("P2WO", "valveall", j);
if (robot.Get("PPO", "valveall") != i)
{
Console.WriteLine("Error PPO Value: " + i);
Thread.Sleep(1000);
}
if (robot.Get("P2WO", "valveall") != j)
{
Console.WriteLine("Error P2WO Value: " + i);
Thread.Sleep(1000);
}
}
}

6.5 Chapter Overview

The preceding tests have shown that the individual and cumulative classes are valid and
working under a variety of input conditions. Unfortunately not all tests performed could
be shown here due to space and time restrictions. Due to the lack of documentation on
the stepper motor, sensor and master nodes, they could not be effectively used during

the testing process.

Chapter 7

Implementing the Program in

Future Projects

7.1 Chapter Overview

This chapter brings together the important information from other chapters of this
document and explains what is required to integrate this project in a higher level

control programs.

7.2 Hardware Configuration

7.2.1 Lawicel CANUSB Driver Installation

In order to be able to talk to the Lawicel CANUSB device, the USB drivers provided
by Lawicel must be installed onto the target computer. The executables are included
in Appendix E on the CD or can be downloaded from the Lawicel CANUSB web site'.

The filenames are as follows:

canusb_d2xx.zip This is the driver to talk to the USB port of the Lawicel CANUSB

"http://www.canusb.com/downloads . htm

http://www.canusb.com/downloads.htm�

7.3 Software Configuration 51

device.

canusbdrv014.EXE This is the driver required to transfer data to and from the Lawicel

CANUSB device and provides a C# DLL to talk directly to the device.

The canusb_d2xx.zip archive contains the driver files required by Windows XP when
the device is initially connected to the computer. This archive must be extracted to a

directory that is searched by the Windows new hardware installation wizard.

Once the Lawicel CANUSB device is recognised by the computer, the second driver can
be installed by running the canusbdrv014.EXE file. This is installed with all default
settings and the result is a new LAWICEL subdirectory in the C:/Program Files folder.
The LAWICEL folder contains the activeX controls, sample code and diagnostic software

for the device.

7.3 Software Configuration

7.3.1 .NET Framework

The code developed for this project was written in C# using the Microsoft .NET
framework V2.0. To be able to run the code, version 2.0 or greater of the framework
must be downloaded and installed from Microsoft.com. The redistributable installer

(dotnetfx.exe) has been included in the Appendix E folder of the CD.

7.3.2 Visual Studio 2005

The Microsoft Visual Studio 2005 Integrated Development Environment (IDE) is highly
recommended if any amount of code is to be developed. While it is possible to code,
debug and run .NET source code using freely available text editors and the .NET
framework SDK, it is well worth the expense to purchase Visual Studio to help manage
the source code files, configuration and documentation associated with a large software

project.

©OONOO P WN -

o e
N = O

7.4 XML Robot Configuration 52

Listing 7.1: Simple XML document.

<?7xml version="1.0"7>

<! -- This 4s a comment -->

<CAN
type = "LawicelCANUSB"
firmware = "0.0.14"
baudrate = "125"
readinterval = "H"
writeinterval = "5"
readtimeout = "500"

>
<! -- Empty robot configuration -->

</CAN>

7.4 XML Robot Configuration

The XML configuration of the robot model is the key component to the simplicity of
the communication interface. Although an advanced knowledge of XML is not required
for this project, a basic knowledge of an XML document is helpful for the debugging

process if errors occur.

The simplest XML document accepted by the program is shown in Listing [7.1/ with the
complete XML document listed in Appendix [D.2. The key elements of the document

are as follows:

Version declaration: Although the version declaration on line 1 is technically op-
tional, it is good practice to include it so that future XML parsers will interpret

the document correctly (Deitel et al. 2003, p. 658).

Root node: There can only be one root node in an XML document which in this
example is the <CAN> element. All nodes in a XML document must be nested
correctly with the appropriate closing tag. The name of root node has no effect
on the running of this program, however it cannot contain spaces or any special

characters or symbols.

Root node attributes: These attributes (type, firmware, baudrate...) are spe-
cific to the entire configuration and interface to the Modular Robot. Attributes
are always interpreted as text and so must be enclosed in either single or double

quotes.

type: The type of CAN bus adapter attached to the computer. Although it is

7.4 XML Robot Configuration 53

not used in the program, it does help documentation purposes.

firmware: The firmware of the CAN device. This value is checked to ensure that

the CAN device has the correct features.
baudrate: Baud rate of the CAN bus that the device will connect to.

readInterval: Time (ms) to wait between read polls on the CAN device. To
improve response times, this value can be set to near zero. The minimum

allowable value is 1ms.

writeInterval: Time (ms) to wait after write intervals on the CAN device. To
improve response times, this value can be set to near zero. The minimum
operational value will depend on the amount of traffic sent to the CAN bus.
If buffer errors occur on the CAN device, this value should be increased to

ensure that messages are being transferred properly.

readTimeout: Time (ms) to wait for a response to a status request from the
CAN bus. The minimum operational value will depend on the amount of

CAN bus activity but should be set low enough to ensure real-time operation.

7.4.1 Defining Nodes

Once the basic XML document has been created and the global CAN settings have been
added, the root <CAN> node can be extended by adding XML nodes in a nested pattern.
The only first level node type accepted by the interface program at this stage is the
<node> which although slightly confusing, is reference to a CAN distributed module or
“node”. The <node> node has the following attributes that must be defined in order

for the program to configure correctly:

name: Unique module name. This name is case sensitive and must be unique within

the list of defined CAN nodes.

type: CAN node type. Must be one of the following types: DCMotor, Master, StepperMotor,

ProportionalPneumatic, 2WayPneumatic or Sensor.

number: Node ID number.

7.4 XML Robot Configuration 54

Node definition
__~Unigue node name
"D ;|~ " //
"DCMotor"+«—
"(O" +«—— Node number

ption = "Prototype DC Mo

__— Node Type

__— Port definition
<porkt & ___— Unique port name to for this node
name = “speed"+«

cription = "Ac the speed mode of the DC motor™

=r = "B1:50:L§ ——— CAN message filter
sagetype = " c',"'\
— End of port " Transmit message type
"direction"

~iption = the direction field of the DC motor"
= "RB2:8(
agetype = "1"
/>
<port
name = "position"
a cription = "Accesses the position mode of the DC motor"
= "B3:S0:L8"
e ll:ll
/>
/node> «——— Endof node

Figure 7.1: Sample XML node and port declaration showing important elements.

description: A brief description of the node. This is not currently used however it
may be useful if a GUI interface were to be added to the system which could

display the descriptions to the user.

An example XML node structure is shown in Figure [7.1.

7.4.2 Defining Ports

Within each of the CAN nodes, any number of ports can be defined which are essentially
specific bits that are filtered from the data field of a CAN message. A port is defined
in XML with the following attributes:

name: Unique port name within the context of the current node. The name is case

sensitive and should represent the use of the port.

description: A brief description of the port that can be used as documentation or as

7.5 Sample Program

55

Data Byte Data Byte
0 2 3 4 5 5 7
80 (0)-% F4 33 44 55 66 77

7 43 o7 43 07 43 0l7 43 0

jooo 0000 0000’0 1111 0100 00-11
Byte #: 0 Byte #: 1 Byte #: 3
Startbit: 7 Start bit: 1 Startbit: 2
Bit Length: 1 Bit Length: 3 Bit Length: 4

“BO:S87:L1" “Bl:S1:L3” “B3:52:L4”

Figure 7.2: Data field showing example filter strings.

an aid on a graphical user interface.

filter: The CAN packet filter to be applied when sending or receiving data through

this port. For an example on how to derive the filter string, see Figure [7.2.

messagetype: The message type to be used when sending a CAN packet. When a
message of specific type is sent from a node, all of the ports that have a matching
message type are included in the data field. If the message type is set to zero,

the port value is included in all messages sent from the parent node.

An example XML port structure is shown in Figure [7.1.

7.5 Sample Program

The sample program listing shown in Appendix D.3| demonstrates the various ways
that the functions provided by the MRModel class can be used for robot control. The
important methods used in the sample program listing and their functionality are as

follows:

MRModel robot = new MRModel(); - This method creates a new reference to a MRModel
class and calls the default constructor. The robot variable can be any unique

variable name and must be used consistently throughout the program.

robot.ConfigFileName = "./robotCAN.xml"; - This property accessor tells the pro-

gram where to find the XML configuration file. The filename given is a relative

7.5 Sample Program 56

Value to be set: —

N
v
void Set(“node name’”, “port name’”, value);
» -
Unique node name for the robot:~<< f} Unique port name for the node:
v

int Get(“node name”, “port name’”) ;
-~

AN

— Current value returned:

Figure 7.3: Set() and Get() commands.

path to the executable and will generate an error if the specified file cannot be

found.

if (robot.Open() < 0) - This statement is used to initialise the robot using the
XML from the configuration file defined above. It also opens the link to the
CANUSB device and will return a number less than zero if the action fails. Once

this method has been successfully called, the program is ready for operation.
robot.Set(nodename, portnamel, valuel);

robot.Set(nodename, portnamel, waluel, ... , portname8, wvalue8); -
The Set family of methods are used to set one or more values in a particular node
and will generate at least one message on the CAN bus each time the function is
called. If a particular nodename or portname cannot be found, it will display an

error message and the function will return immediately.

robot.Get(nodename, portname); - The Get command is used to return the value
of a specified port on a specified node. This will generate a status request message
on the CAN bus and the value will be returned when the physical node replies.

The format of the Get () and Set () commands are shown in Figure 7.3l

robot.Close(); - This method is used to clear the TX and RX buffers and to close
the link to the CANUSB device. This method should be the last command given

to the MRModel class in a program.

7.6 Summary 57

7.6 Summary

This chapter has given a overview on every element required to use the developed code
in a higher level control program. The complete code listings used in this chapter can

be found in Appendix Dl of this document and Appendix D of the CD.

Chapter 8

Conclusions and Further Work

8.1 Achievement of Project Objectives

The following objectives have been addressed:

Research & documentation of distributed control modules. Chapter3/performed
a dissection of each of the control modules and detailed the current hardware and
software capabilities that each module offers. The research found that while the
hardware capabilities of the modules are very promising, the assembly code soft-
ware was originally designed only for testing and demonstration purposes and so
cannot provide sufficient testing capabilities for this project to properly develop
a positional control system. As a result, the project objectives were shifted to
focus on providing a communication interface to the CAN bus for a higher level

programming environment.

Design of data packet standard. Chapter [4 proposed a common data format for
each of the distributed control modules to simplify communication between nodes.
While the design of the data format for the modules is very application specific,
a base format for the general order of bytes has been specified as a starting point

for future implementations.

Development of communication interface. Chapter |5 outlines the implementa-

8.2 Further Work 59

tion decisions and features of the developed system. The communication inter-
face consists of two distinct layers with minimal dependency on each other. This
independence proved invaluable when the message transfer layer was rewritten
to change the CANUSB device interface from a serial COM port to a USB DLL

without affecting any other part of the system.

Performance analysis and testing. Chapter6/shows some of the testing stages and
drivers that were used to gauge the reliability of the system. The code has been
designed and written to handle most user inputs however complete stress and
integration testing can only be achieved when all of the distributed modules are

fully functional on the CAN bus.

Documentation of code and designs. Chapter [7l explains from a user’s point of
view how to install, use and configure the system to suit the required application.
This chapter covers all of the technical information required to integrate the

communication interface into a higher level program.

8.2 Further Work

Whilst the revised objectives for this project have been met and the developed software
will simplify the interface to the modular robot, the initial objectives were to develop
a much more advanced system that would be able to provide positional control and
automation in a user-friendly scripting interface. Although the work developed by this
project has greatly helped toward the realisation of that goal, the software in each of the

distributed modules must now be updated to match the capabilities of the hardware.

This embedded software development would be in the form of a set of generic sub-
routines and functions that can be linked together and combined with some application
specific logic. This would simplify the programming of the PICs and improve the devel-
opment speed of the entire robot. This set of code modules could include Analogue-To-
Digital (ADT) functions, motor control sub-routines, positional pneumatic and motor
controls, generic interrupt routines and other basic I/O functions. The most effective

development environment for this would be the C language which already offers strong

8.3 Conclusion 60

real-time performance as well as the ability to develop very modular and generic sub-
routines. This would enable novice users with little assembly language background to
develop advanced embedded control programs for the PICs by simply adding calls to

sub-routines and thus hiding the complicated device structure from the user.

Once the code in each of the distributed modules can easily provide positional control
or feedback over its local environment, the next layer of control software on the PC
side can be developed. This would utilise the processing power in each of the modules
to be able to provide positional control over the entire robot structure with very little

communication required on the CAN bus.

As for further work on this communication interface, some of the finer functionality
and error handling could be refined to ensure robustness given all types of input data.
A GUI application to simplify the creation and editing of the XML configuration file
would further reduce the chance of human error and a run-time GUI showing the current
values for important nodes and ports would provide advanced debugging capabilities.
The latency of the Get () method could be improved by immediately returning the saved
value of the port value if it has been recently updated, rather than always waiting on
a new status message. A further improvement would be to to raise events whenever
to any of the port values change. A higher level program could then attach callback

functions to the events

8.3 Conclusion

The USQ Modular Robot development is a continually evolving project which can
bring together a wide variety of disciplines such as mechanical, mechatronic, electronic,
computer systems, instrumentation and control, and software engineering. This wide
range of technical expertise working on a single project requires the use of simple
designs and complete documentation of design rational and outcomes. Unfortunately
for this project the previous documentation was unclear on the specific functionality
of the distributed modules which resulted in a change of scope and objectives for this

project.

8.3 Conclusion 61

Given the new objectives for this project, the developed program is highly successful at
meeting the simplicity and performance requirements for such a system. The commu-
nication layer has outstanding latency times of 15 — 50ms and has a simple interface
to higher level programs. This means it can be replaced with a simulation layer or
wireless transfer layer if required at some time in the future. The virtual robot model
layer simplifies the programmer interface by providing a set of simple commands that

can be used to set and access data from any module attached to the CAN bus.

The greatest drawback to the system is the dependency on specifications of the CAN
packet identifier by Francois Hoffman. Any change to the ordering or range of bits in the
identifier will require a change in the CANPacket class and also all of the classes in the
virtual robot model layer which generates the CAN messages. Any changes to the data
field can be configured by the XML document which handles the BitFilter for each
port. The use of XML has dramatically reduced the code required for the system, and
also allows the one configuration file to be expanded later to add kinematic information

without affecting the data for this program.

Overall, this project has developed a very useful tool for anyone wanting to demonstrate
a practical application of the Modular Robot, and also for future software engineers to
follow through on the initial project objectives of developing an advanced kinematic

control system.

References

Billerwell, M. (2001), ‘Modular robot controller’, USQ BEng Thesis.

Bosch GmbH, R. (1991), CAN Specifications, Version 2.0, Adobe Acrobat Document
Format.
http://www.semiconductors.bosch.de/pdf/can2spec.pdf
current May 2006.

Craig, J. J. (2005), Introduction to Robotics: Mechanics and Control, 3rd edn, Pearson
Education, Inc., USA.

Deitel, H., Deitel, P., Listerfeild, J., Nieto, T., Yaeger, C. & Zlatkina, M. (2003), C# for
Ezxperienced Programmers, Deitel Developer Series, Prentice Hall, Upper Saddle

River, New Jersey.

Fredriksson, L.-B. (1999), Bluetooth in automotive applications,
WWW.kvaser.se

current September 2006.

Hoffman, F. (2005), Distributed control system for different applications, Master’s the-
sis, USQ.

Kimmel, P. (2002), Advanced C# Programming, McGraw-Hill/Osborne.

KVASER (2005), ‘Controller Area Network Overview’.
http://www.kvaser.com

current June 2006.

Lawicel (2003), CAN232 Manual Version 2.0A.

http://www.semiconductors.bosch.de/pdf/can2spec.pdf�
www.kvaser.se�
http://www.kvaser.com�

REFERENCES 63

http://www.can232.com
accessed 20-April-2006.

Lawicel (2006), CANUSB Manual Version 1.0B.
http://www.canUSB. com
accessed 20-April-2006.

Microchip (2002), PIC16F87/88 Datasheet (DS30487A), Adobe Acrobat Document
Format.

http://www.microchip.com.

MicroController.com (1999), ‘CAN (Controller Area Network): Introduction & funda-
mentals’.
http://microcontroller.com/EmbeddedSystems.asp?c=27

current September 2006.

Microsoft Developer Network (2006), ‘. NET framework fundamentals’.
http://msdn.microsoft.com/netframework/programming/fundamentals/
default.aspx

accessed 26-September-2006.

National Semiconductor (2003).
http://info.hobbyengineering.com/specs/LM340.pdf

current June 2006.

Netbeans (2006), ‘Netbeans IDE’.
http://wuw.netbeans.org

current September 2006.
Scouller, C. (2002), ‘Graphical user interface for modular robot’, USQ BEng Thesis.
Teoh, L. P. (2001), ‘Robot design kit’, USQ BEng Thesis.

Wikipedia (2006a), ‘.net framework — wikipedia, the free encyclopedia’.
http://en.wikipedia.org/w/index.php?title=.NET_Framework&oldid=
(7275753
accessed 26-September-2006.

http://www.can232.com�
http://www.canUSB.com�
http://www.microchip.com�
http://microcontroller.com/EmbeddedSystems.asp?c=27�
http://msdn.microsoft.com/netframework/programming/fundamentals/default.aspx�
http://msdn.microsoft.com/netframework/programming/fundamentals/default.aspx�
http://info.hobbyengineering.com/specs/LM340.pdf�
http://www.netbeans.org�
http://en.wikipedia.org/w/index.php?title=.NET_Framework&oldid=77275753�
http://en.wikipedia.org/w/index.php?title=.NET_Framework&oldid=77275753�

REFERENCES

64

Wikipedia (2006b), ‘Visual basic — wikipedia, the free encyclopedia’.
http://en.wikipedia.org/w/index.php?title=Visual_Basic&oldid=
77612738
accessed 26-September-2006.

http://en.wikipedia.org/w/index.php?title=Visual_Basic&oldid=77612738�
http://en.wikipedia.org/w/index.php?title=Visual_Basic&oldid=77612738�

Appendix A

Project Specification

A.1 Issue A - 27 March 2006

See page 65

A.2 1Issue B - 15 August 2006

See page [65.

University of Southern Queensland
Faculty of Engineering and Surveying

ENG 4111 / 4112 Research Project
PROJECT SPECIFICATION

FOR: Kevin STARK
0050009783

TOPIC: Script—Based Control Language for the Modular Robot Devel-
opment

SUPERVISOR: Mark Phythian

PROJECT AIM: This project aims to investigate the kinematics involved with

the control of various mechanical robot configurations and use
the common elements to develop an abstract seripting language
and user interface for the distributed CAN bus controller of the
Modular Robot Development.

PROGRAMME: Issue A: 27 March 2006

1. Research basic robot arrangements capable of the Modular Robot Development.

2. Develop mathematical equations to model the kinematics of basic robotic movements
and mechanical arrangements.

3. Develop & program a set of mathematical functions which can decompile a complex
kinematic equation into a set of related equations for each motor, actuator or servo
attached to the robot.

4. Design a minimal set of control, looping, logic, timing and function operators which
can be used as a fundamental control language for the robot.

[]

Implement the above language definition into a command parser and a CAN-bus
controller.

=2l

Develop a basic development environment for the command parser to allow real-time
feedback and debugging info.

As time permits:

7. Improve parser algorithms to improve speed and efficiency of commands by using
the main CAN-bus controller and on-board chips to make calculations and broadcast
data.

8. Improve the user interface of the script editor to allow for keyword highlighting and
auto command completion.

AGREED:

/ /
(Student) (Supervisor) (Dated)

University of Southern Queensland
Faculty of Engineering and Surveying

ENG 4111 / 4112 Research Project
PROJECT SPECIFICATION

FOR: Kevin STARK
0050009783
TOPIC: Modular robot communication interface
SUPERVISOR: Mr. Mark Phythian
PROJECT AIM: This project aims to document guidelines for the CAN message

protocol used by the modular robot and to develop a PC based
message handling program to simplify future control of the mod-
ular robot.

PROGRAMME: Issue B: 15 August 2006

1. Research the hardware capabilities of the generic CAN modules.

2. Design a data packet standard that can be used as a guideline for future CAN module
design.

3. Develop a configurable and expandable communication interface that can link a high
level control program to the CAN modules.

4. Analyse and evaluate the performance of #3 using test drivers and various scenarios.

ot

. Fully document the API provided by #3 and also the data packet standards defined

in #2.
As time permits:

6. Develop a graphical user interface tool to configure the robot model.

AGREED:

/ /
(Student) (Supervisor) (Dated)

Appendix B

System Diagrams

B.1 System Model

B.1 System Model

The following diagram is a simplified system structure showing the individual layers.

Modular Robot
Virtual Model

High Level Program

Named virtual fﬁodules: “Node's”

44— b
Stepper
DC Motor Motor

B o8
SN
S
N,

|
|

|
S
; |
|

|
|
|
i

/ \ W
I
= &

Named data fields: “Ports”

/

pasds
paadg

Virtual Robot Model Layer

.y e
Pneumatic Sensor
Module Module

> *

Virtual Robot Model Layer

NV

TX Buffer

CAN Interface Layer
—

| | -

RX Buffer

Software

Hardware

Appendix C

Source Code Listing

This appendix contains all of the source code files developed for this project. These

files can also be found in the Appendix C folder on the CD.

C.1 Contents 71

C.1 Contents

The files are listed in alphabetical order and are as follows:

C.2:

C.3:

C.4:

C.6:

C.7:

C.8:

C.9:

BitFilter.cs - This class filters out specific data bits from a CANPacket data

frame.

CANPacket.cs - This class models a CAN data packet and includes a number of

packet manipulation functions to aid in its use.

CANUSB. cs - This class controls the access to the Lawicel CANUSB device and

provides buffering and error checking.

: HexConverter.cs - This class converts HEX characters into integers values.

Log.cs - This class provides logging capabilities for the CANUSB class.

MRModel.cs - This class acts as the interface between the CANUSB and a higher

level control program.
Node.cs - This class models a CAN node.

Port.cs - This class models a I/O data port on the nodes.

0 NOUTNs W N R

o
R o ©

o
w N

-
I'S

C.2 BitFilter.cs 72

C.2

using
using
using
using

BitFilter.cs

Listing C.1: BitFilter class source code.

System;

System.Text;
System.Collections.Generic;
System.Windows .Forms;

namespace ModularRobot

public class BitFilter

{

/T -
// Private data fields

private int byteNumber; // Byte number (0 - 7)

private int bitStart; // Start bit number (0 - 7)

private int numBits; // Number of bits to include (8-bitStart)
e s

// Public data fields / constants

public const int DEFAULT_BYTENUM = 1;
public const int DEFAULT_BITSTART = O;
public const int DEFAULT_NUMBITS = 8;

/) BABBRABBRRBBRRBBRBRBRRRBBRRBRRRBBRRBRRRBBRRBBRRBBRRRBRRRBBRRBRRRBRIH
// Constructors

/// <summary>
/// BitFilter constructor.
/// </summary>
/// <param name="byteNumber">Byte number to select. (0 - 7)</param>
/// <param mname="bitStart">Start bit number. (0 - 7)</param>
/// <param mname="numBits">Number of bits to include.</param>
public BitFilter (int byteNumber, int bitStart, int numBits)
{
Initialise(byteNumber, bitStart, numBits);

/// <summary>

/// BitFilter constructor.

/// </summary>

/// <param mname="parseString">

/// A walid string to parse from. ’Bz:Sz:Lz’
/// </param>

public BitFilter(string parseString)

{

}

VAR I I T T ETETEIETETETETETETETEIETETETEIETETETETETETET I ETETETET ¥
// Property accessors

ParseString(parseString);

/// <summary>

/// Gets the Byte index for this filter.
/// </summary>

public int ByteNumber

{
get { return byteNumber; }

/// <summary>

/// Gets the starting bit number.
/// </summary>

public int StartBitNumber

{
get { return bitStart; }

/// <summary>

/// Gets the bit field length.
/// </summary>

public int FieldLength

{

get { return numBits; }

82
83

84
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

108
109
110
111
112
113
114
115
116
117

118
119

120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153
154

155

156
157

158
159
160
161
162
163
164

C.2 BitFilter.cs

73

VAR I I EET LT TR ELTEETEETEETEETEETEETEETEEFTTETTEETETTETTETTETTEFT T T L

// Private methods

/// <summary>

/// Manages the initialisation for the BitFilter.
/// </summary>

/// <param mname="byteNumber">Byte number to select.

(0 -7)</param>

/// <param mname="bitStart">Start bit number. (0 - 7)</param>

/// <param name="numBits">Number of bits to include.

</param>

private void Initialise(int byteNumber, int bitStart, int numBits)

{
if (byteNumber >= 0 && byteNumber <= 7)
this.byteNumber = byteNumber;
else
{
this.byteNumber = DEFAULT_BYTENUM;
throw new InvalidBitFilterException(
"Invalid Byte Number: " + byteNumber.ToString());
if (bitStart >= 0 && bitStart <= 7)
this.bitStart = bitStart;
else
{
this.bitStart = DEFAULT_BITSTART;
throw new InvalidBitFilterException(
"Invalid Start Bit: " + bitStart.ToString());
}
if (numBits > 0 && numBits <= (8 - StartBitNumber))
this.numBits = numBits;
else
{
this.numBits = (8 - StartBitNumber);
throw new InvalidBitFilterException(
"Invalid Field Length: " + numBits);
}
}
YR S E L E LR LR L PR L P R LT P e et

/// <summary>
/// Creates a mew BitFilter from a formatted string.
/// </summary>

/// <param mname="parseString">The BSL string to parse.</param>

private void ParseString(string parseString)

{

string[] subs = parseString.Split(’:’);
if (!subs[0].StartsWith("B") || subs[0].Length != 2)
throw new InvalidBitFilterException(
"Invalid sequence: \n\"" + parseString + "\"");
if (!'subs[1].StartsWith("S8") || subs[O].Length != 2)
throw new InvalidBitFilterException(
"Invalid sequence: \n\"" + parseString + "\"");
if (!'subs[2].StartsWith("L") || subs[O].Length != 2)
throw new InvalidBitFilterException(
"Invalid sequence: \n\"" + parseString + "\"");
try
{
int b = int.Parse(subs[O].Remove(0, 1));
int s = int.Parse(subs[1].Remove(0, 1));
int 1 = int.Parse(subs[2].Remove(0, 1));

Initialise(b, s, 1);
catch (Exception e)

throw new InvalidBitFilterException(
"Invalid sequence: \n\"" +
parseString + "\"\n" +
e.Message);

}

VAR I I EEEETTEEEEETEEEETETEEFEETTEEEETTEEFEETEFEFETTTFFFEETTEEFETS

// Public methods

/// <summary>

/// Gets the integer walue from the CANPacket at the BitFilter location.

/// </summary>

/// <param mname="msg">CANPacket message to parse.</param>

/// <returns>Integer wvalue at the current BitFtilter
public int ParseValue(CANPacket msg)
{

location.</returns>

165
166
167
168

169
170

171
172

173
174
175

177
178
179
180
181
182
183
184
185
186
187

189
190
191
192

193
194

195
196

197
198
199
200
201
202
203
204
205
206
207
208

210
211
212
213
214
215
216

217
218

219
220

221
222
223
224
225
226
227
228

229
230

231
232

233
234
235
236
237
238
239
240
241
242

243
244

245
246

247
248

C.2 BitFilter.cs 74

/77
/77
/77
/77
/77
/77
/77
/77

int value = (int)msg[ByteNumber];

value = value / ((int)Math.Pow(2, StartBitNumber));
value = value % ((int)Math.Pow(2, FieldLength));
return value;

<summary >
Adds the given wvalue to the location specified by the BitFilter.
Overflow may occur.

</summary >

<param name="msg">CANPacket to add to.</param>

<param name="wvalue">

Value to be added. Value is trimmed to the current field size.
</param>

public void AddValue(CANPacket msg, int value)

{

/77
/77
/77
/77
/77
/77

if (value != value % ((int)Math.Pow(2, FieldLength)))
MessageBox . Show (
"Field Overflow: \n" +
"Value: " + value.ToString() + "\n" +
"Max Value: " +
(Math.Pow(2, FieldLength) - 1).ToString());
// Trim value to appropriate bit length
value = value % ((int)Math.Pow(2, FieldLength) + 1);
value = value * (int)Math.Pow(2, StartBitNumber);
msg[ByteNumber] += (byte)(value % 256);

<summary >

Compares two BitFilters. Returns true 4if all internal fields are
tdentical.

</summary >

<param name="obj">BitFilter to compare.</param>

<returns>True tf equal.</returns>

public override bool Equals(Object obj)

{

/77
/77
/77
/77
/77

BitFilter bobj = (BitFilter)obj;

if (
(this.ByteNumber == bobj.ByteNumber) &&
(this.StartBitNumber == bobj.StartBitNumber) &&
(this.FieldLength == bobj.FieldLength))

{ return true;

}

else

{

return false;

<summary >

Gets a unique hash code for the BitFilter. Equal BitFilters will
return the same hash code.

</summary >

<returns></returns>

public override int GetHashCode()

/77

return ToString().GetHashCode();

<summary >

A string representation of the BitFilter.
</summary >

<returns></returns>

public override string ToString()

}

return
"B" + ByteNumber.ToString("D1") +
":8" + StartBitNumber.ToString("D1i") +
":L" + FieldLength.ToString("D1");

} // public class BitFilter

VAR I LR EEE T T E T EFEEEETTFEEEETEEEFE T T T FEF T T T EEET T

/7

249
250

251
252
253
254
255
256
257

259
260

261
262
263

264
265

266
267
268

269
270

271
272

273

C.2 BitFilter.cs

75

VAR I EETTET TR LT EETEETTETEETEETTETTETTETTETTEZTEZTEZTTIZTESTEZTEZTEETEES

/// <summary>
/// Invalid BitFilter Ezception.
/// </summary>

public class InvalidBitFilterException : ApplicationException

{
public InvalidBitFilterException()
base("Illegal bit filter value.")
{

}

public InvalidBitFilterException(string message)
base (message)
{

}

public InvalidBitFilterException(string message,
base(message, inner)
{

}
} // public class InvalidBitFilterEzception

} // namespace ModularRobot

Exception inner)

© O NS WN R

R N
oA W N R O

o
~N o

-
[

[N
o ©

W oW W wWwwWwwWwNNNNDNDNNNN
O W NP O O OWNO O WN P

w w
~N o

w
e

S w
So

SRR
[X R

NS
IS

N
hSE-N

S I T B TS B
D O W N R O © 0

oo
® N

DO DHID DD DD DG
© 0N WN PR O ©

~ =
o

~
N

~ N
~w

N NN NN
© N o a

C.3 CANPacket.cs 76

C.3 CANPacket.cs

Listing C.2: CANPacket class source code.
using System;
using System.Collections.Generic;
using System.Text;
using System.Windows.Forms;
using Lawicel;

namespace ModularRobot

/// <summary>

/// Contains a header and data structure for a CANUSB/CAN232 message.
/// </summary >

public class CANPacket

{

// Private data fields
private LAWICEL.CANMsg innerMsg = new LAWICEL.CANMsg();

/7
// Public data fields / constants

/// <summary>

/// Integer representation of a Status Request message type.

/// </summary >

public const int MESSAGE_TYPE_STATUS_REQUEST = 0xO0; // -= -=-= === 000
/// <summary>

/// Integer representation of a Type 1 message type.

/// </summary >

public const int MESSAGE_TYPE_1 = 0x1; // -- --- --- 001
/// <summary>

/// Integer representation of a Type 2 message type.

/// </summary>

public const int MESSAGE_TYPE_2 = 0x2; // -- --- --- 010
/// <summary>

/// Integer representation of a Type 3 message type.

/// </summary >

public const int MESSAGE_TYPE_3 = 0x3; // == -=-=- --- 011

/) BABURABBRRBBRRRBRRRBRRRBBRRBBRABBRRBBRRBBRRBBRRRBBRRBRRRBBRRBRRABRIH
// Comnstructors

/// <summary>

/// Default CANPacket constructor.
/// </summary>

public CANPacket() { }

/// <summary>

/// Creates a new CANPacket using a deep copy method.
/// </summary >
/// <param mname="
/// </param>
public CANPacket (CANPacket original)

{

original ">CANPacket to copy from. Must not be null.

if (original != null)
this.CreateFromString (original.ToString());
}

/// <summary>

/// Creates a new CANPacket from a LAWICEL.CANMsg structure.

/// </summary>

/// <param mname="original ">LAWICEL.CANMsg to copy from. Must not be
/// null.</param>

public CANPacket(LAWICEL.CANMsg original)

{
this.innerMsg.id = original.id;
this.innerMsg.flags = original.flags;
this.innerMsg.len = original.len;
this.innerMsg.data = original.data;

}

VAR I s E sy by ey ey T T E T T T T T T T T EEE TS
// Property accessors

/// <summary>

/// Gets or sets the Message Type (MT) bit of the identifier which
/// selects either a broadcast or directed message. If broadcast s
/// set to true, the DirectedToMaster bit is set to false

/// automatically.

80
81
82
83
84
85
86
87
88
89
90
91

93
94
95
96
97

98
99

100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127
128

129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144

145
146

147
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

C.3 CANPacket.cs

77

/// </summary>
public bool Broadcast

If

{
V2R Bt ey
get { return (int)(innerMsg.id / (uint)1024) == (uint)1
set
{
if (value != Broadcast) // To be changed
{
if (Broadcast) // Swap current status.
{
innerMsg.id -= (uint)1024;
DirectedToMaster = false;
}
else
innerMsg.id += (uint)1024;
}
}
}
/T o -
/// <summary>
/// Gets or sets the DirectedToMaster (DTM) bit of the identifier.
/// this bit 4s set to true, the Broadcast bit ts set to false
/// automatically.
/// </summary>
public bool DirectedToMaster
{
get
{
return (int)
((innerMsg.id / (uint)512) % (uint)2) == 1;
} // -z ——= ——= ===
set
if (value != DirectedToMaster)
if (DirectedToMaster)
innerMsg.id -= (uint)512;
Broadcast false;
}
else
innerMsg.id += (uint)512;
}
}
}
e e

/// <summary>
/// Gets or sets
/// </summary>

the Node Type

public int NodeTypeNumber

{
get { return (int)(
set
{
if (value >= 0
innerMsg.id
innerMsg.id
}
}
}
/7

/// <summary>
/// Gets or sets
/// </summary>
public int NodeIDNumber
{

get { return (int)((innerMsg.id / (uint)8) %

set

{

if (value >= 0

innerMsg.id
innerMsg.id

(innerMsg.id / (uint)64) % (uint)8);

&&

+=

the Node ID Number (NIN)

&&

+=

Number (NTN)

/- -

TTT ———- ——-

value <= 7)

(uint)(NodeTypeNumber * 64);
(uint)(value * 64);

assigned to the node.

2RI

TTT ———

7))

value <=

(uint)(NodeIDNumber * 8);
(uint)(value * 8);

(uint)8);

}

}

assoctated with this packet

164

165
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182
183

184
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199

200
201

202
203

204
205
206
207
208
209
210
211
212
213
214
215
216

217
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

C.3 CANPacket.cs

78

/// <summary>

/// Gets or sets the Message Sub-Type

/// message.
/// </summary >

// - - --- --- zzz

get { return (int)((innerMsg.id / (uint)1)

public int MessageType
{
set
{
if (value >= 0 &&
{
innerMsg.id -=
innerMsg.id +=
}
}
}

/// <summary>

/// Gets or set the RTR bit
/// Remote Frame Request.
/// </summary>

public bool RTR

value <= 7)

(uint)MessageType;
(uint)(value * 1);

wn the control field.

(MST) associated with this

% (uint)8);

This bit signals a

}

{
get { return innerMsg.flags == LAWICEL.CANMSG_RTR;
set
{
if (value)
innerMsg.flags = LAWICEL.CANMSG_RTR;
else
innerMsg.flags = 0x0;
}
}
/e e

/// <summary>

/// Gets or sets the number of data bytes

/// header. Must be

/// between 0 and 8 inclusive.

/// </summary >
public int Datalength

s between 0 -

8

(DLC) to follow the message

innerMsg.len = (byte)(Math.Max(Math.Min(vélue, 8), 0));

{
get { return (int)innerMsg.len; 1}
set
// Ensures that the walue set
}
}

/// <summary>

/// Gets or sets the data wvalue the indezed

/// walid range from 0 - 7 inclusive,

/// bounds.
/// </summary>

location.

/// <param name="indez">A index into the .</param>
/// <returns>Integer wvalue of the byte at the indezed

/// </returns>
public int this[int index

get
{

]

Indexz has a

and will return (0) <f out of

location.

if (index >= 0 && index <= 7 && index < Datalength)

{

ulong val = DatalLong / ((ulong)Math.Pow(256, index));

return (int)(va

return O0;

1

% 256);

if (index >= 0 && index <= 7)
{

value = value %
int val = value

256;
- this[index 1;

Datalong += ((ulong)val) * (ulong)Math.Pow(256, index);
if (index >= Datalength)

DatalLength

index + 1;

C.3 CANPacket.cs 79

248 }

249 }

250

251 /// <summary>

252 /// Returns a single unsigned long integer wvalue of the entire Data field.
253 /// </summary>

254 public ulong Datalong

255 {

256 get { return innerMsg.data; }

257 set { innerMsg.data = value; 1}

258 }

259

260 VAR I I EETELTTETELTELTTETEETEFTEETEFTTETIFTTETT T ETTEZTEZTITIZTEZT TS
261 // Private methods

262

263

264

265 VAR I I LT ELTTETELTEETTETEETEETTETEETTETEEFTTETTEZTETTEZTEZTETTEZT TS
266 // Public methods

267

268 /// <summary>

269 /// This method is redundant when using the USB driver interface.
270 /77

271 /// Fills packet header and data values from a given string of HEX
272 /// wvalues. An invalid string sequence will result in default packet
273 /// wvalues, and the original string returned. If the parse action s
274 /// successful, the HEX wvalues used from the string are removed and
275 /// the remainder of the string is returned.

276 /// </summary>

277 /// <param name="buffer">A string of HEX walues to parse from.</param>
278 /// <returns>

279 /// The original string on failure, unused character string

280 /// on success.

281 /// </returns>

282 public string CreateFromString(string buffer)

283 {

284 if (buffer.Length < 4) // Minimum header length.

285 return buffer;

286

287 UInt16[] bytes = new UIntl16[buffer.Length];

288 // Convert the HEX string into integer values.

289 for (int i = 0; i < buffer.Length; i++)

290 bytes[i] = HexConverter.ConvertToUIntl16(buffer[i]);
291

292 int identifier = 0; // Initial header walue.

2903

294 // Create the message identifier.

295 identifier += bytes[0] * 256;

296 identifier += bytes[1] * 16;

297 identifier += bytes[2 1;

298

299 innerMsg.id = (uint)identifier;

300

301 Datalength = bytes[3]; // Get the data length

302

303 // Ensure that enough data bytes are supplied in the HEX string.
304 if (buffer.Length < 4 + Datalength * 2)

305 return buffer;

306

307 // Copy the data bytes into the packet.

308 for (int 1 = 0; i < 8 && i < Datalength; i++)

309 {

310 // High nibble

311 this[i 1 = (byte)(bytes[i *x 2 + 4 1 * 16);

312 // Low nibble

313 this[i] += (byte)bytes[i * 2 + 5];

314 }

315

316 StringBuilder retString = new StringBuilder (buffer);

317

318 // Remove the used bytes from the string.

319 retString.Remove(0, 4 + Datalength);

320

321 return retString.ToString();

322 }

323

324 /S T T T oo
325

326 /// <summary>

327 /// Converts the packet to a string of HEX walues.

328 /77

329 /// This method is redundant when using the USB driver tinterface.
330 /// </summary>

331 /// <returns>A HEX string representation of the packet.</returns>

332 public string ToHexString()

333
334
335
336
337
338
339
340
341

342
343

344
345

346
347

348
349

350

351
352

3563
354

355
356

357

358
359

360
361

362
363
364
365
366
367
368

369
370

371
372
373
374

375
376
377

378

C.3 CANPacket.cs 80

/77

// Construct the identifier
int identifier = 0x000;
if (DirectedToMaster)

identifier += 0x200;
else if (Broadcast)

identifier += 0x400;
identifier += NodeTypeNumber * 64;
identifier += NodeIDNumber x* 8;
identifier += MessageType;

//innerMsg.<id = (uint)identifier;

// Convert to ascit
StringBuilder result = new StringBuilder (
identifier.ToString("X3"));

// Append the data length code (Low nibble)
result.Append (Datalength.ToString("X2")[1 1);

// Add each data byte
for (int i = 0; i < DataLength; i++)
result.Append(this[i].ToString("X2"));

return result.ToString();

<summary >

Returns a string representation of the CANPacket
</summary >

<returns>String representation of the CANPacket.</returns>

public override string ToString()

{

return ToHexString();

internal LAWICEL.CANMsg LawicelMsg()
{

return new CANPacket(this).innerMsg;

}
} // class CANPacket

} // namespace ModularRobot

ON DU WN R

C.4 CANUSB.cs 81
C.4 CANUSB.cs
Listing C.3: CANUSB class source code.

using System;

using System.Collections.Generic;

using System.Text;

using System.Windows.Forms;

using System.Threading;

using Lawicel;

using System.IO;

namespace ModularRobot

{

public class CANUSB
{

/e
// Private data fields
private uint handle; // CANUSB adapter handle.
private System.Threading.Timer writeTimer;
private System.Threading.Timer readTimer;
private System.Threading.Timer statusTimer;
private String baudRate = "";
private int writeTimeout = O0;
private int readTimeout = O0;
private Queue<CANPacket> txQueue = null;
private Queue<CANPacket> rxQueue = null;
private Log canlog; // Manages a log file.
private Object lockObject = new Object ();
et
// Public data fields / constants
public event EventHandler MessageReceived;
public const String CAN_LOG_FILE = "./CanLog.txt";
// Interval between CAN Status checks.
public const int STATUS_CHECK_INTERVAL = 1000;
public const string CAN_BAUD_1M = "1000"; /7 1 MBit / s
public const string CAN_BAUD_800K = "800"; // 800 kBit / s
public const string CAN_BAUD_500K = "500"; // 500 kBit / s
public const string CAN_BAUD_250K = "250"; // 250 kBit / s
public const string CAN_BAUD_125K = "125"; // 125 kBit / s
public const string CAN_BAUD_100K = "100"; // 100 kBit / s
public const string CAN_BAUD_50K = "50"; // 50 kBit / s
public const string CAN_BAUD_20K = "20" // 20 kBit / s
public const string CAN_BAUD_10K = "10" // 10 kBit / s

VAR I I EEET I EEEET LR T E e T T EE T T T EEEETTEEFEETEFEFE T T T FFEE T T T EEF TS

// Constructors

/// <summary>

/// Creates a mew CANUSB interface.

/// </summary >

/// <param mname="CAN_BAUD">

/// A string representation of the baud rate.

/// </param>

/// <param name="readTimeout">

/// Interval time between read attempts. Dependent on baud rat
/// </param>

/// <param mname="writeTimeout ">

/// Delay time between write operations. Dependent on baud rat

/// </param>

e.

e.

public CANUSB(String CAN_BAUD, int readTimeout, int writeTimeout)

{

Initialise(CAN_BAUD, readTimeout, writeTimeout);

/// <summary>
/// Manages the CANUSB initialisation process.
/// </summary>
/// <param name="baudRate"></param>
/// <param name="readTimeout"></param>
/// <param mame="writeTimeout"></param>
private void Initialise(
String baudRate, int readTimeout, int writeTimeout)

// Checks to ensure that the given baud rate %s wvalid.
if (CheckBaudRate(baudRate))

C.4 CANUSB.cs 82

81 this.baudRate = baudRate;
82 else
83 throw new InvalidBaudRateException(

84 "Invalid Baud Rate: " + baudRate.ToString());
85

86 if (readTimeout > 0)

87 this.readTimeout = readTimeout;
88

89 if (writeTimeout > 0)

90 this.writeTimeout = writeTimeout;
91

92 txQueue

93 rxQueue
94

95 canlog = new Log(CAN_LOG_FILE);
9 }

97
98 VAR I I LT ELETTETELTEETEETEETEETTETEETEETTETTETTEETETTETTEETETTEZT T L

99 // Property accessors
100

101 /// <summary>

102 /// Adds CANPackets to the TX queue, and removes CANPackets from the
103 /// RX queue. Returns null +if no messages available.

104 /// </summary>

105 public CANPacket Buffer

106 {

107 get

108 {

109 CANPacket retVal = null;

110 lock (rxQueue) // Protects the buffer from multiple access.
111 {

112 if (rxQueue.Count > 0)

113 // Attempts to remove a CANPacket.

114 retVal = rxQueue.Dequeue();

115 T
116

117 if (retVal != null)

118

119 canlog.Value = "Dequeue: " + retVal.ToString();
120 return new CANPacket(retVal);

121

122 else

123 return retVal;

124 }

125 set

126 {

127 lock (txQueue) // Protects buffer from multiple access
128

129 if (value != null)

130

131 txQueue.Enqueue (new CANPacket(value));

132 // Adds a log entry

133 canlog.Value = "Enqueue: " + value.ToString();
134 }

135 ¥

136 }

137 }
138

139 /) T T T T oo
140

141 /// <summary>

142 /// Gets or sets the baud rate of the bus. Change will not take effect
143 /// until port has been re-opened.
144 /// </summary>

145 public String BaudRate

146 {

147 get { return baudRate; }

148 set

149 {

150 if (CheckBaudRate(value))
151 baudRate = value;

152 }

153 }
154

155 A R R R

156

157 /// <summary>

158 /// Gets or sets the read time interval. Changes take effect
159 /// immediately

160 /// </summary>

161 public int ReadTimeout

162 {

163 get { return readTimeout; 1}
164 set

165 {

166 if (value >= 0)

new Queue<CANPacket>();
new Queue<CANPacket>();

C.4 CANUSB.cs 83

167 readTimeout = value;

168 readTimer.Change(readTimeout, readTimeout);

169 }

170 }

171

172 /) T T T oo
173

174 /// <summary>

175 /// Gets or set the write time delay. Changes take effect immediately
176 /// </summary >

177 public int WriteTimeout

178 {

179 get { return writeTimeout; 1}

180 set

181 {

182 if (value >= 0)

183 writeTimeout = value;

184 writeTimer.Change (writeTimeout, writeTimeout);
185 }

186 }

187

188 /T T T oo
189

190 /// <summary>

191 /// Thread safe TX queue count

192 /// </summary>

193 private int SafeTXCount

194 {

195 get

196 {

197 int count;

198 lock (txQueue)

199

200 count = txQueue.Count;

201

202 return count;

203 }

204 }

205

206 /) T -
207

208 /// <summary>

209 /// Thread safe RX queue count

210 /// </summary>

211 private int SafeRXCount

212 {

213 get

214 {

215 int count;

216 lock (rxQueue)

217

218 count = rxQueue.Count;

219

220 return count;

221 }

222 }

223

224 /) RRRBBBBBBBBRBRBBBRRRRRRARRRRRRBB BB BB RRBRBRBRBRRRARRRRRBBBBBBRBRBRRHH
225 // Public methods

226

227 /// <summary>

228 /// Event to be triggered when a message is recetved.

229 /// </summary>

230 /// <param mname="e"></param>

231 protected virtual void OnMessageReceived(EventArgs e)
232

233 if (MessageReceived != null)

234 MessageReceived (this, e);

235 }

236

237 /T T T o oo
238

239 /// <summary>

240 /// Configures and opens the CAN bus ready for transfer.
241 /// </summary>

242 /// <returns>True on success, false on failure.</returns>
243 public bool Open()

244 {

245 handle = LAWICEL.canusb_Open(IntPtr.Zero,

246 baudRate,

247 LAWICEL .CANUSB_ACCEPTANCE_CODE_ALL,

248 LAWICEL .CANUSB_ACCEPTANCE_MASK_ALL,

249 LAWICEL.CANUSB_FLAG_TIMESTAMP);

250 if (handle <= 0)

251 {

252 MessageBox.Show("Failed to Open CANUSB");

253

254
255

256
257
258
259

260
261

262
263
264
265

266
267

268
269

270
271
272
273

274
275
276
277

278
279

280
281

282

284
285
286
287
288
289
290
291
292
293
294
295
296

297
298

299
300

301
302
303
304
305
306
307
308

309
310

311
312
313
314
315
316

317
318

319
320
321
322
323
324
325
326
327
328

329
330

331

332
333

334
335
336
337
338

C.4 CANUSB.cs

84

return false;

readTimer = new System.Threading.Timer (
new TimerCallback(this.Read),
null,
readTimeout ,
readTimeout);

writeTimer = new System.Threading.Timer (
new TimerCallback(this.Write),
null,

writeTimeout,
writeTimeout);

canlog.Value = "CANUSB Initialised";

statusTimer = new System.Threading.Timer (
new TimerCallback(this.StatusCheck),
null,

STATUS_CHECK_INTERVAL,
STATUS_CHECK_INTERVAL);

return true;

/// <summary>

/// Clears the TX queue and appends the given message.

/// </summary>

/// <param name="msg">Emergency message to transmit.</param>
public void EmergencyMsg(CANPacket msg)

{
// Adds a log entry
canlog.Value = "EMERGENCY MESSAGE: " + msg.ToString();
lock (txQueue)
canlog.Value = "Clearing " + txQueue.Count + " messages.";
txQueue.Clear ();
txQueue.Enqueue (new CANPacket(msg));
}
writeTimer.Change(0, writeTimeout);
}
Y e il b

/// <summary>

/// Closes and releases the LAWICEL CANUSB adapter.
/// </summary>

public void Close()

{

canlog.Value = "Closing CANUSB.";

while (txQueue.Count > 0)

{
Thread.Sleep(500);
if (txQueue.Count > 0)

canlog.Value = txQueue.Count.ToString() +
" items still remaining in TX queue.";

}

readTimer . Change (
System.Threading.Timeout.Infinite,
System.Threading.Timeout.Infinite);

int res = LAWICEL.canusb_Close(handle);

if (LAWICEL.ERROR_CANUSB_0K == res)

{
canlog.Value = "Closed 0K";

}

else

{
MessageBox.Show("Failed to Close CANUSB");
canlog.Value = "Failed to Close CANUSB";

}

}

VAR I I EET LT EEEETEEEEETTEEEEETTEEEETTTEFEETEFEEEFTTEEFETTTEEFETS

// Private methods

/// <summary>

/// Callback method to check the status of the canbus.

/// </summary>

/// <param mname="state">State information passed in.</param>
private void StatusCheck(Object state)

C.4 CANUSB.cs 85

339 {

340

341 int rv;

342 lock (lockObject)

343 {

344 rv = LAWICEL.canusb_Status(handle);
345 }

346

347 if (rv == 0)

348 {

349 //canlog.Value = "STATUS: OK";

350 }

351 else

352 {

353 String errstr = "ERROR: ";

354 if (rv % 2 == 1)

355 errstr += "’RX FIFO Full’ "

356 rv = rv / 2;

357

358 if (rv % 2 == 1)

359 errstr += "’TX FIFO Full’ "

360 rv = rv / 2;

361

362 if (rv % 2 == 1)

363 errstr += "’Error Warning’ ";

364 rv = rv / 2;

365

366 if (rv % 2 == 1)

367 errstr += "’Data Overrun’ "

368 rv = rv / 2;

369

370 rv = rv / 2;

371

372 if (rv % 2 ==)

373 errstr += "’Error Passive’ "

374 rv = rv / 2;

375

376 if Crv % 2 ==1)

377 errstr += "’Arbitration Lost’ "
378 rv = rv / 2;

379

380 if (rv % 2 == 1)

381 errstr += "’Bus Error’ "y

382

383 canlog.Value = errstr;

384 }

385

386 }

387

388 /) T T T o oo
389

390 /// <summary>

391 /// Callback function used to periodically read messages from the
392 /// CAN bus.

393 /// </summary>

394 /// <param mname="state"></param>

395 private void Read(Object state)

396 {

397 int iCont = 1;

398 // Read ome CAN message

399 LAWICEL.CANMsg msg = new LAWICEL.CANMsg();
400

401 //canlog.Value = "Reading";

402 while (iCont == 1)

403

404

405 int rv;

406 lock (lockObject)

407 {

408 rv = LAWICEL.canusb_Read(handle, out msg);
409 }

410 if (LAWICEL.ERROR_CANUSB_0K == rv)
411 {

412

413 CANPacket canmsg = new CANPacket(msg);
414

415 canlog.Value = "RX: " +

416 msg.id.ToString("X3") + " " +
417 msg.len.ToString ("X1") + " " +
418 HexConverter.InvertHexString(
419 msg.data.ToString("X16"));
420

421 lock (rxQueue)

422 {

423 rxQueue . Enqueue (canmsg);

424 OnMessageReceived (new EventArgs());

425 }

426
427
428
429
430
431
432
433
434
435
436
437
438

439
440

441
442

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

458
459

460
461
462
463
464
465
466
467
468
469

482
483
484
485
486
487
488
489
490

491
492

493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

C.4 CANUSB.cs

86

3
else if (LAWICEL.ERROR_CANUSB_NO_MESSAGE ==
{

iCont = 0;

rv)

canlog.Value = "Failed to read message.";
// Trigger the status check.

statusTimer.Change(O,

}
else
{
iCont = 0;
}
}
}

/// <summary>
/// Sends messages from the TX queue.
/// to be sent.
/// </summary>
private void Write(Object state)

if (SafeTXCount > 0)
{

CANPacket msg
lock (txQueue)

{

}

= null;

if (SafeTXCount == 0)
return;
msg = txQueue.Dequeue();

LAWICEL.CANMsg lawicelMsg =

int rv;
lock (lockObject)

{

}
if (LAWICEL.ERROR_CANUSB_OK
{

}

rv = LAWICEL.canusb_Write(handle,

canlog.Value = "TX: " +
lawicelMsg.id.ToString("X3"

lawicelMsg.len.ToString(
HexConverter.InvertHexString(
lawicelMsg.data.ToString(

"X" + ((int)lawicelMsg.len * 2).ToString()));

Active while

== rv)

nyxqn

STATUS_CHECK_INTERVAL);

there are messages

msg.LawicelMsg();

ref lawicelMsg);

) + " "

)+n

else if (LAWICEL.ERROR_CANUSB_TX_FIFO_FULL

{

}

canlog.Value = "ERROR: FIFO full.
msg.ToString();
// Trigger the status check.

statusTimer.Change(O,

else

{

Can’t

+
"oy

= rv)

send message.

STATUS_CHECK_INTERVAL);

canlog.Value = "ERROR: Failed to send message. " +
msg.ToString ();
// Trigger the status check.

statusTimer.Change(O,

/// <summary>

/// Checks

to see if the given string

/// </summary>
/// <param mname="br">Baud rate.</param>

/// <returns>True

©f given string

s a valid LAWICEL baud rate.

private bool CheckBaudRate(String br)

{

return

br.
br.
br.

br

br

(br.CompareTo(CAN_BAUD_1

CompareTo (
CompareTo (
CompareTo (

.CompareTo (
br.

CompareTo (

.CompareTo (
br.

CompareTo (

CAN_BAUD_20K

CAN_BAUD_50K

CAN_BAUD_100K
CAN_BAUD_125K
CAN_BAUD_250K
CAN_BAUD_500K
CAN_BAUD_800K

)
)

N

STATUS_CHECK_INTERVAL);

"

is a walid CAN baud rate.</returns>

510
511

512
513
514

515
516
517
518
519
520
521
522
523

524
525

526
527

528
529
530

531
532

533
534

535
536
537

538
539

540
541

542

C.4 CANUSB.cs 87

br.CompareTo(CAN_BAUD_1M) == 0);

¥
} // public class CANUSB

VAR I I EETTET TR EETTETFETFFTTFTTETFFTTETTEFTTETTITIZIFZTEZTITIZTEZTITIZTIZTEETELS

// //
/) BERRBBBBRARBBBRRRRBBBRRARBRBRRRBBBERRRBBBRRARBBBRRRRBBBRRRRBBBRRRBBBHHAH
public class InvalidBaudRateException : ApplicationException

{

public InvalidBaudRateException()
base ("Invalid Baud Rate.")
{

}

public InvalidBaudRateException(string message)
base(message)

{
}

public InvalidBaudRateException(string message, Exception inner)
base(message, inner)
{

}

} // pudblic class InvalidBaudRateExzception

} // namespace ModularRobot

O © N UAWN R

N
SN OR W

C.5 HexConverter.cs

88

C.5 HexConverter.cs

Listing C.4: HexConverter class source code.

using System;
using System.Collections.Generic;
using System.Text;

namespace ModularRobot

{

/// <summary>
/// A simple HEX converting
/// </summary >
public class HexConverter

{

/77
/77
/77
/77
/77
/77

<summary >

Converts a HEX based character (0:F) to

(0x00:0x0F) .
</summary >

<param name="hezxVal">A HEX character 1in

</param>

/77

(UInt16)(hexVal

class

/77
{
switch (hexVal)
{
case ’07:
case ’17:
case ’27:
case ’37:
case ’47:
case ’57:
case ’67:
case ’77:
case ’87:
case ’97:
return
case ’A’:
case ’a’:
return O0xO0A4;
case ’B’:
case ’b’:
return O0xOB;
case ’C’:
case ’c’:
return 0x0C;
case ’D’:
case ’d’:
return 0xO0D;
case ’E’:
case ’e’:
return OxOE;
case ’F’:
case ’f’:
return OxOF;
return 0x00;
}
/// <summary>
/77
/// only.
/// </summary>
/77
/// </param>
/// <returns>Inverted string.
/// </returns>

public static String InvertHexString(String str)

if (str.Length > 1)

ie:

0)

Inverts a given string of HEX walwues.

<param name="str">HEX input string.

its

<returns>Integer walue n the range 0z0 to OzF.
character cannot be converted.</returns>
public static UInt16 ConvertToUInt16(char hexVal)

0x30);

Inverts full

integer wvalue

the range of 0 to F.

Returns 0xz00 if

byte wvalues

Length of string must be even.

OF4F8FCF will return CF8F4FOF.

"Invalid HEX string:

i < str.Length;

tr[i
str[i

+
]

{
if (str.Length 7 2
throw new Exception(
StringBuilder s =
for (int i = 0;
{
s.Insert(O,
s.Insert(O,
}
return s.ToString();
}
else

1
)

H

]

);

i 4=

0dd number of characters.");
new StringBuilder();
2)

C.5 HexConverter.cs

89

return str;

}

} // class HezConverter

© 0N OUR WN R

e e
DA W NR O

-
J3

P
© 0o

N
o

NN
N

NNNNN N
[N BN)

w N
o ©

w
s

w w
w N

B W W W W W W
R O ®© N OB

NN
w N

NN
o

0NN NNNNINNINNDDOOOODD DO IO OO OGO GO TSN
SO O NOU A WNROD®ONONA®NONHLO ©O NGO AROR OO0 N®

C.6 Log.cs 90

C.6 Log.cs

Listing C.5: Log class source code.

using System;

using System.Collections.Generic;
using System.Text;

using System.IO;

namespace ModularRobot

public class Log
{

// Private data fields

private StreamWriter file;
private StringBuilder 1log;
private bool newestontop = false;

i e bbb
// Public data fields / constants

/) RRRBBBBBBRRBRRRRRRRRRRRARRRRR BB BB BB RRRRRRRRRRRRRARRRRBRBBBBRRBRBRHH
// Constructors

public Log(String name)

{
file = new StreamWriter (name);
file.WriteLine (
"Log Created: " + DateTime.Now.ToString() + "\n");

log = new StringBuilder();

[/ BERRBHBBARBBBERARBBBRRARBBBRRRBBBBRRRBBBBRARBRERRARBRRRARBBBRRRBBHHH
// Property accessors

/// <summary>

/// Determines whether new messages are placed at the top or bottom of
/// log file.

/// </summary>

public bool NewestOnTop

{

get { return newestontop; }
set { newestontop = value; 1}

/// <summary>

/// Writes a timestamped log entry to the file or gets the full log
/// file in a string.

/// </summary>

public String Value

{
get
{
string templog;
lock (log)
{

templog = log.ToString();

return templog;

}
set
{
lock (log)
{
DateTime dt = DateTime.Now; // Timestamp
String logString =
dt.Hour.ToString("D2") + ":" +
dt.Minute.ToString("D2") + ":" +
dt.Second.ToString("D2") + "." +
dt.Millisecond.ToString("D3") + " " +

value + "\n";
if (newestontop)

{
log.Insert(0, logString);

else
{
log.Append(logString);

file.Write(logString);

81
82
83
84
85

87
88

89
90

91
92
93
94
95
96
97
98

100
101

102

C.6 Log.cs 91

//MessageBox.Show("Log" + logString);
file.Flush();

/) BRBURABBRRBBRRBBRRRBRRRBBRRBRRRBBRRBRRRBBRRBBRRBBRRRBRRRBBRRBRRRBRIH
// Private destructor

“Log()
{

try
{
//file.Close();

catch (Exception) { }
}

} // public class Log
} // namespace ModularRobot

VN G A W N

C.7 MRModel.cs 92

C.7

using
using
using
using
using
using

MRModel .cs

System

System.
System.
System.
System.
System.

Listing C.6: MRModel class source code.
Collections.Generic;
Text;
Xml ;
Windows .Forms;
Threading;

namespace ModularRobot

public class MRModel

{

// Private data fields

private String configFileName;

private Dictionary<String, Node> nodes;
private CANUSB comm;

private int readtimeout;

/7 -

// Public data fields / constants

/) BABBRABBRARBRRBBRARBRRRBBRRBBRABBRRBBRRBBRARBRRRBBRRBRRRBBRRBRRABRIH
// Comstructors

publ
{

}

ic MRModel()

Initialise();

private void Initialise()

{

}

configFileName = "./robotCAN.xml";

nodes = new Dictionary<string, Node>();

//comm = new CANTezt ();

/) RARBBBBBBBBRBRBBBRRRRRRARRRRRRBB BB BB BB BBB BB R RRRRRARRRRBB BB BB BRBR R
// Property accessors

/77
/77
/77
publ
{

<summary >

Sets the XML config file mame for this robot model
</summary >

ic String ConfigFileName

get { return configFileName; }
set { configFileName = value; 1}

/) RRRBBBBBBRRBRRBRBRRRRRRRRRRRRR BB BB B RRBBRRRRRRRRRRRRRBBBB BB RRRBRRRHRH
// Private methods

/77
/77
/77
/77
/77

<summary >

Function that %s called when a CAN message ©s received.
</summary >

<param name="sender"></param>

<param name="e"></param>

private void ReceiveMessage(Object sender, EventArgs e)

{

/77

CANPacket msg = comm.Buffer;
foreach (Node n in nodes.Values)

if (n.NodeTypeNumber == msg.NodeTypeNumber &&
n.NodeIDNumber == msg.NodeIDNumber)

n.ParseMessage(msg);

<summary >

Returns a mamed node or null
</summary >

<param mname="mame"></param>
<returns></returns>

private Node GetNode(String name)

Node temp;
if (!nodes.TryGetValue(name, out temp))

82
83

84
85

86

87
88

89
90
91
92
93
94
95
96
97
98
99

100
101

102

103
104

105
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148

149
150

165
166

C.7 MRModel.cs

93

return null;
return temp;

}

VAR I IIIEET I T LTI EEETTTEEEEETTEFEETTTEFEETIFEFETFTTFFFETTIEEEFETS

// Public methods

/// <summary>

/// Causes an emergency stop message

/// </summary>

public void EmergencyStop()

{
CANPacket msg new CANPacket();
msg.Broadcast true;
msg.DirectedToMaster = false;
msg.NodeTypeNumber = Node.MASTER_
msg.NodeIDNumber = 0;
msg.MessageType = 0;
msg[0 1 = 0;

comm.EmergencyMsg(msg);

/// <summary>

/// Initialises the model and opens the comms

/// </summary>
/// <returns>

to be sent to

NODE;

channel

/// 0 on success, mnegative error message on failure

/// </returns>
public int Open()
{

XmlDocument doc = new XmlDocument
try
{

doc.Load(configFileName);

catch (XmlException exp)
{

MessageBox . Show (

(G

the CAN bus.

"Invalid XML File: " + configFileName + "\n" + exp.Message);

return -1;

catch (Exception exp)

{
// Just 1in case
MessageBox . Show (
exp.Message, exp.Source,
MessageBoxButtons.0K, MessageBoxIcon.Error);
}
XmlElement root = doc.DocumentElement;

XmlAttributeCollection settings =

try

{
String br = settings["baudrate"].Value;
int ri = int.Parse(settings["readinterval"].Value);
int wi = int.Parse(settings["writeinterval"].Value);
readtimeout = int.Parse(settings["readtimeout"].Value);
comm = new CANUSB(br, ri, wi);

catch (Exception e)

root.Attributes;

))

{
MessageBox.Show(e.Message);
return -2;
}
// MessageBoxz.Show("About to parse”);
foreach (XmlNode node in root.SelectNodes("node"
{
try
{
Node newNode = new Node((XmlElement)(node));
nodes.Add(newNode.Name, newNode);
catch (Exception e)
//MessageBox.Show("Exception Thrown");
MessageBox.Show(e.Message);
return -3;
}
}

167
168
169
170
171

172
173

174
175

176
177
178

180
181
182
183

184
185

186
187

188
189
190
191
192
193
194
195

197
198
199
200
201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225
226

227
228

229
230
231
232
233
234
235
236
237
238
239
240
241

242
243

244
245

246
247
248
249
250

C.7 MRModel.cs

94

/77
/77

comm.MessageReceived += new EventHandler(this.ReceiveMessage);

if (comm.Open())
return O;
return -1;

<summary >

Closes the communication channel
</summary >

<returns ></returns>

public int Close()

/77
/77
/77
/77
/77
/77

comm.Close();
return O;

<summary >

Returns a wvalue from a named port on a node
</summary >

<param name="node">Node to access</param>

<param mname="port">Port name to get value</param>

<returns></returns>

public int Get(String node, String port)

{

4

Node n = GetNode(node);
if (n != null)
{
comm.Buffer = n.StatusMessage();
int timeout = readtimeout;
while (!n.UpToDate && timeout > 0)
{
Thread.Sleep(readtimeout / 50);
timeout -= readtimeout / 50;
¥
if (timeout < 0)
{
MessageBox . Show (
"Status request ’" + node + "." +
port + "’ timed out.");
¥
try

return n.GetValue(port);

catch (Exception e)
{
MessageBox . Show (
"Port ’" + port + "’ on node " +

node + "’ not found.\n" + e.Message);

return O;

return O0;

<summary >

Returns a string representation of the class.
</summary >

<returns></returns>

public override string ToString()

{

StringBuilder str = new StringBuilder();

str.AppendLine("File: " + ConfigFileName);

foreach (Node n in nodes.Values)
str.AppendLine(n.ToString());

return str.ToString();

<summary >

Sets a given number of ports with corresponding values

</summary >

<param name="

node">Node name to access</param>

<param name="port">String array of port mnames to set</param>

251
252

253
254

255
256

257
258

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

285
286

287
288

289
290
291
292
293
294
295
296
297
298
299

300
301

302
303

304
305
306
307
308
309
310
311
312
313
314
315
316

317
318

319
320

321
322
323
324
325
326
327
328
329
330
331
332
333

C.7 MRModel.cs

95

/// <param mname="value">Corresponding port wvalues to be set</param>
public void Set(String node,

{

/77
/77
/77
/77
/77
4

public void Set(String node,

{

/77
/77
/77
/77
/77
4

/77
/77
/77
/77
/77
/77

String[] port,

int[1 value)

if (port.Length != value.Length || port.Length == 0)
throw new Exception(
"Port and value arrays have different lengths.");
Node n = GetNode(node);
List<int> mt = new List<int>();
if (n != null)
{
for (int i = 0; i < port.Length; i++)
{
try
{

int t = n.SetValue(port[i 1],

mt.Add(t);
catch (Exception e)

MessageBox . Show (

"Port ’" + port[i] + "?
"> not found.\n" + e.Message);

return;

}

mt.Sort ();
foreach (int i in mt)

{

comm.Buffer = n.GetMessage(i);

value[i]);
if (t != 0 &% 'mt.Contains(t))

on node

>

+ node

<summary >

Sets "waluel” to "portl" on "mnode"

</summary >

<param mname="node">Node to be accessed</param>
<param name="portl">Port name</param>
<param name="wvaluel">Value</param>

String[] sa = { portl };
int[] ia = { valuel };
Set (node, sa, ia);

String porti,

int valuel)

<summary >

Sets "walueN" to "portN" on "node"”

</summary >

<param name="

<param name="portN">Port name</param>
<param name="wvalueN">Value</param>
public void Set(String node,

String portl, int valuel,
String port2, int value2)

String[] sa = { portl, port2

};

int[] ia = { valuel, value2 };

Set (node, sa, ia);

node">Node to be accessed</param>

<summary >

Sets "walueN" to "portN" omn "node"

</summary >

<param name="node">Node to be accessed</param>
<param mame="portN">Port name</param>
<param name="valueN">Value</param>

public void Set(String node,

String portl, int valuel,
String port2, int value2,
String port3, int value3)

String[] sa = { portl, port2,
int[] ia = { valuel, value?2,

port3 };
value3 };

C.7 MRModel.cs 96

334 Set (node, sa, ia);

335

336

337 /) T T -
338

339 /// <summary>

340 /// Sets "walueN" to "portN" on "node"

341 /// </summary >

342 /// <param mname="node">Node to be accessed</param>

343 /// <param mname="portN">Port mname</param>

344 /// <param name="wvalueN">Value</param>

345 public void Set(String node,

346 String portl, int valuel,

347 String port2, int value2,

348 String port3, int value3,

349 String port4, int value4)

350 {

351 String[] sa = { portl, port2, port3, portd I};

352 int[] ia = { valuel, value2, value3, valued4 };

353 Set (node, sa, ia);

354 }

355

356 Y e S
357

358 /// <summary>

359 /// Sets "walueN" to "portN" on "node"

360 /// </summary>

361 /// <param mname="node">Node to be accessed</param>

362 /// <param mname="portN">Port name</param>

363 /// <param mname="wvalueN">Value</param>

364 public void Set(String node,

365 String portl, int valuel,

366 String port2, int value2,

367 String port3, int value3,

368 String port4, int value4,

369 String port5, int valueb5)

370 {

371 String[] sa = { portl, port2, port3, port4, ports };
372 int[] ia = { valuel, value2, value3, value4, value5 };
373 Set (node, sa, ia);

374 }

375

376 /) T -
377

378 /// <summary>

379 /// Sets "walueN" to "portN" on "node"

380 /// </summary >

381 /// <param name="node">Node to be accessed</param>

382 /// <param mname="portN">Port name</param>

383 /// <param name="valueN">Value</param>

384 public void Set(String node,

385 String portl, int valuel,

386 String port2, int value2,

387 String port3, int value3,

388 String port4, int value4,

389 String port5, int value5,

390 String port6, int value6)

391 {

392 String[] sa = { portl, port2, port3, portd, port5, port6 };
393 int[] ia = { valuel, value2, value3, valued4, value5, value6 I};
394 Set (node, sa, ia);

395 }

396

397 /T T T o oo
398

399 /// <summary>

400 /// Sets "walueN" to "portN" on "node"

401 /// </summary>

402 /// <param mname="node">Node to be accessed</param>

403 /// <param mname="portN">Port mname</param>

404 /// <param name="valueN">Value</param>

405 public void Set(String node,

406 String portl, int valuel,

407 String port2, int value2,

408 String port3, int value3,

409 String port4, int value4,

410 String port5, int value5,

411 String port6, int value6,

412 String port7, int value7)

413 {

414 String[] sa = {

415 portl, port2, port3, port4, port5, port6, port7
416

417 iﬁt[1 ia = {

418
419
420

421
422

423
424

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

448
449

450
451
452

C.7 MRModel.cs

97

/77
/77
/77
/77
/77
/77

valuel, value2, value3, value4, valueb, value6,
};

Set(node, sa, ia);

<summary >

Sets "walueN" to "portN" on "node"

</summary >

<param name="node">Node to be accessed</param>
<param name="portN">Port name</param>

<param name="wvalueN">Value</param>

public void Set(String node

}

String portl, int valuel,
String port2, int value2,
String port3, int value3,
String port4, int value4,
String port5, int value5,
String port6, int value6,
String port7, int value7,
String port8, int value8)

String[] sa = {
portl, port2, port3, port4, portb5, porté6, port7,
};

int[] ia = {
valuel, value2, value3d, value4, valueb5, value6,
};

Set (node, sa, ia);

} // public class MRModel

} // namespace ModularRobot

value7

port8

value7, value8

0N OO WN R

I S T T
SO ®ND A A WNOR O ©

N
g

NN
W N

B R R R D DWW W W WWWWWWNNNNNDDN
DR WP, O 00N WP O ®©0NO O

B
(RS

'S
©

o g
o

o oo g
=W N

Sl
[xe!

o g
o~

o o u
R O ©

@ o
W N

-3
o

O NNANNINNINND OO O
SO ®VIOARWNROD ©® N O

C.8 Node.cs 98

C.8

using
using
using
using
using

Node.cs

Listing C.7: Node class source code.

System;
System.Collections.Generic;
System.Text;

System.Xml;
System.Windows.Forms;

namespace ModularRobot

{

public class Node
{

// Private data fields

private String name;

private String description;

private int nodetypenumber;

private int nodeIDnumber;

private Dictionary<String, Port> ports;
private bool online = false;

private bool uptodate = false;

/7
// Public data fields / constants

/// <summary>

/// Integer representation of Master node type number.

/// </summary>

public const int MASTER_NODE = 0x7; // -- 111 --- ---
/// <summary>

/// Integer representation of a DC Motor node type number.

/// </summary>

public const int DC_MOTOR = O0x1; // == 001 --- ---
/// <summary>

/// Integer representation of a Stepper Motor mnode type number.

/// </summary>

public const int STEPPER_MOTOR = 0x2; // -- 010 --- ---
/// <summary>

/// Integer representation of a Proportional Pneumatic node type number.
/// </summary>

public const int PNEUMATIC_PROPORTIONAL = O0x4; // -- 100 --- ---
/// <summary>

/// Integer representation of a 2 Way Pneumatic node type number.

/// </summary>

public const int PNEUMATIC_TWO_WAY = 0x3; // == 011 --- ---
/// <summary>

/// Integer representation of a Sensor node type number.

/// </summary>

public const int SENSOR = 0x5; // -- 101 --- ---

/) RABBRABBRABBRARBRARBRRRBBRRBRRABBRRBBRABBRARBRRRBRRRBRRABBRRBRRABRIH
// Comstructors

public Node(int NodeType, int NodeID, String Name)
{

Initialise(NodeType, NodeID, Name, "");

public Node(int NodeType, int NodeID, String Name, String Description)
{

Initialise(NodeType, NodeID, Name, Description);

public Node(XmlElement node)
{

node.GetAttribute ("name");
node.GetAttribute("type");

String nodeName
String nodeType

int nodeNumber;
try
{
nodeNumber = Intl16.Parse(node.GetAttribute("number"));

catch (Exception)
{
throw new Exception(
"Could not parse node ’number’ from XML: \n" + node.OuterXml

C.8 Node.cs 99

81 String nodeDesc = null; //node.GetAttribute("description");
82

83 int ntn;

84 switch (nodeType)

85 {

86 case "Master":

87 ntn = Node.MASTER_NODE;

88 break;

89 case "DCMotor":

90 ntn = Node.DC_MOTOR;

91 break;

92 case "StepperMotor":

93 ntn = Node.STEPPER_MOTOR;

94 break;

95 case "ProportionalPneumatic":

96 ntn = Node.PNEUMATIC_PROPORTIONAL;

97 break;

98 case "2WayPneumatic":

99 ntn = Node.PNEUMATIC_TWO_WAY;

100 break;

101 case "Sensor":

102 ntn = Node.SENSOR;

103 break;

104 default:

105 throw new Exception("Unknown NodeType: " + nodeType);
106 }

107

108 if (nodeDesc == null)

109 Initialise(ntn, nodeNumber, nodeName, "");

110 else

111 Initialise(ntn, nodeNumber, nodeName, nodeDesc);
112

113 //MessageBoz.Show("Node Init");

114

115 foreach (XmlNode port in node.SelectNodes("port"))
116

117 Port newPort = new Port((XmlElement)(port));
118 ports.Add(newPort.Name, newPort);

119 }

120 }

121

122 VAR I I IEET LRy E ey E ey E T T E ST T T T T I EEEEETEEEEF TS
123 // Property accessors

124

125 /// <summary>

126 /// Gets the mode name.

127 /// </summary>

128 public String Name

129 {

130 get { return name; }

131

132

133 /) T T oo oo ——————-—-
134

135 /// <summary>

136 /// Gets the mode description

137 /// </summary>

138 public String Description

139 {

140 get { return description; 1}

141 set { description = value; }

142 }

143

144 /) T T -
145

146 /// <summary>

147 /// Gets the node type number.

148 /// </summary>

149 public int NodeTypeNumber

150 {

151 get { return nodetypenumber; }

152

153

154 /) T T oo oo - -
155

156 /// <summary>

157 /// Gets the mode ID number

158 /// </summary >

159 public int NodeIDNumber

160 {

161 get { return nodelIDnumber; }

162

163

164 /// <summary>

165 /// Determines 4if this node it up to date (any ports set changed)
166 /// </summary>

167 public bool UpToDate

C.8 Node.cs 100

168 {

169 get { return uptodate; }

170

171

172 VAR I I EETEETTETELSTEETEEEEETEETEETEETTETTETTETTEETETTETTEETEFTEZT ST L
173 // Private methods

174

175 private void Initialise(

176 int nodeType, int nodeID, String name, String description)
177 {

178 if (nodeType >= 0 && nodeType <= 7)

179 nodetypenumber = nodeType;

180 else

181 throw new Exception(

182 "Invalid NodeTypeNumber: " + nodeType.ToString());
183

184 if (nodeID >= 0 && nodelID <= 7)

185 nodeIDnumber = nodelD;

186 else

187 throw new Exception(

188 "Invalid NodeIDNumber: " + nodeID.ToString());

189

190 if (name == null || name.Contains(" ") || name.Contains("."))
191 throw new Exception(

192 "Node NAME cannot be null or contain spaces or periods.");
193

194 this.name = name;

195 this.description = description;

196 ports = new Dictionary<string, Port>();

197 }

198

199 VAR I I EEETILEEETTILEETETEEEETTTEEEETTFEFEETTFEFETFTTFFFETTTEEEETS
200 // Public methods

201

202 /// <summary>

203 /// Returns a status request message to be sent to the node.

204 /// </summary >

205 /// <returns></returns>

206 public CANPacket StatusMessage()

207 {

208 uptodate = false;

209 CANPacket msg = new CANPacket();

210 msg.Broadcast = false;

211 msg.DirectedToMaster = (NodeTypeNumber == MASTER_NODE);

212 msg.NodeTypeNumber = NodeTypeNumber;

213 msg.NodeIDNumber = NodeIDNumber;

214 msg.MessageType = CANPacket.MESSAGE_TYPE_STATUS_REQUEST;

215 msg.DatalLength = 0;

216 return msg;

217 }

218

219 Y e e
220

221 /// <summary>

222 /// Gets a specific port wvalue.

223 /// </summary>

224 /// <param mname="pName">Port name</param>

225 /// <returns></returns>

226 public int GetValue(String pName)

227

228 Port p = GetPort(pName);

229 if (p == null)

230 throw new Exception("Port ’" + pName + "’ not found.");
231 else

232 return p.Value;

233 }

234

235 /T T T oo
236

237 /// <summary>

238 /// Sets a specific port wvalue

239 /// </summary>

240 /// <param mname="pName">Port to be set</param>

241 /// <param mname="wal">value to be set</param>

242 /// <returns>Message type required for this port</returns>

243 public int SetValue(String pName, int val)

244

245 Port p = GetPort(pName);

246 if (p == null)

247 throw new Exception("Port ’" + pName + "’ not found.");
248 else

249 {

250 p.Value = val;

251 return p.MessageType;

252 }

253
254

255
256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

283
284

285
286

287
288
289
290
291
292
293
294
295

297
298
299
300
301
302
303
304
305
306
307
308

309
310

311
312

313
314
315
316
317
318
319

320
321

322
323

324
325
326
327
328
329

330
331

332

333
334

335
336

C.8 Node.cs 101

/// <summary>

/// Eztracts individual port information from the message.
/// </summary>

/// <param name="msg">CAN status message</param>

public void ParseMessage(CANPacket msg)

{

if (msg.Broadcast == true ||
(msg.NodeTypeNumber == NodeTypeNumber &&
msg.NodeIDNumber == NodeIDNumber))

foreach (Port p in ports.Values)
{

if (msg.Broadcast == false)

// Only update ports with matching MT
if (msg.MessageType == p.MessageType)
p-ExtractInfo(msg);
}

else

// Update all fields on for a broadcast message.
p-ExtractInfo(msg);

uptodate = true;

/// <summary>

/// Gets a CAN message of specific type. Will return a CAN message
/// with port tinformation from all ports with matching ’type’.

/// </summary>

/// <param mname="type">Message type to be sent</param>

/// <returns></returns>

public CANPacket GetMessage(int type)

{
CANPacket msg = new CANPacket();
foreach (Port p in ports.Values)
{
if (p.MessageType == 0 || p.MessageType == type)
{
p.-AddInfo(msg);
}
msg.Broadcast = false;
msg.DirectedToMaster = (NodeTypeNumber == MASTER_NODE);
msg.NodeTypeNumber = NodeTypeNumber;
msg.NodeIDNumber = NodeIDNumber;
msg.MessageType = type;
return msg;
¥
Y e T

/// <summary>

/// Returns true if the port has received a status message from the bus.
/// </summary>

/// <returns></returns>

public bool IsOnline()

{

return online;

/// <summary>

/// Returns a list of port names attached to this node.
/// </summary>

/// <returns></returns>

public String[] PortNames()

{
Dictionary<String, Port>.KeyCollection keys = ports.Keys;

if (keys.Count == 0)
return null;

String[] arr = new String[keys.Count];
int i = 0;

C.8 Node.cs 102

337 foreach (String s in keys)

338

339 arr[i 1 = s;

340 i++;

341 }

342 return arr;

343 }

344

345 /) T T T T -
346

347 /// <summary>

348 /// Returns the number of ports attached to this node.
349 /// </summary>

350 /// <returns></returns>

351 public int NumPorts()

352

353 return ports.Count;

354 }

355

356 /) T T -
357

358 /// <summary>

359 /// Returns a specific port

360 /// </summary>

361 /// <param name="name"></param>

362 /// <returns></returns>

363 public Port GetPort(String name)

364 {

365 Port temp;

366 if (!ports.TryGetValue(name, out temp))
367 return null;

368 return temp;

369 }

370

371 /) T T T T T oo
372

373 /// <summary>

374 /// Returns the entire port list.

375 /// </summary>

376 /// <returns></returns>

377 public Dictionary<String, Port> GetAllPorts()
378

379 return ports;

380 }

381

382 /) T T -
383

384 /// <summary>

385 /// Adds a port to the node.

386 /// </summary>

387 /// <param mname="p"></param>

388 public void AddPort(Port p)

389 {

390 ports.Add(p.Name, p);

391

392

393 /) T T T oo
394

395 /// <summary>

396 /// String representation of the node.

397 /// </summary>

398 /// <returns></returns>

399 public override string ToString()

400

401 StringBuilder str = new StringBuilder();
402 str.AppendLine (

403 "Node: " + Name +

404 ", NIN: " + NodeTypeNumber +

405 ", NID: " + NodeIDNumber);

406

407 //MessageBox.Show(str.ToString());

408 foreach (Port p in ports.Values)

409 {

410 str.AppendLine(" " + p.ToString());
a11 }

412 str.AppendLine ();

413 //MessageBoxz.Show(str.ToString());

414 return str.ToString();

415 }

416

417 }Y // class Node

418

419 } // namespace ModularRobot

e
R O ©®NOU B WN R

I R T T T
BN P O©OONOO W N

N
a

[N
N o

N
0

w N
o ©

W W W
W R

w
SRS

ww
N o

S W W
= O ©

N
w N

s
S

o B B B < B AN AN < I B < T B TS BT N
B WO RO OO NOO DA ®NOR O ©®OND

o
o o

NN NN OO0
WN P O © &~

~N
o

N~
~N o

~
0

®
S ©

©
-

C.9 Port.cs

103

C.9

using
using
using
using
using

Port.cs

System;

Listing C.8: Port class source code.

System.Collections.Generic;
System.Text;
System.Windows .Forms;

System.Xml

s

namespace ModularRobot

/// <summary>

/// Holds

/// </summary>
public class Port

{

// Private data fields

private
private
private
private
private
private
private

BitFilter parser;
String name;

String description;
int messageType;

int currentValue;

int setValue;

bool changed = false;

current <nformation about a physical port om a node.

A e EEEE LR LR

// Publi

¢ data fields / constants

/) REBBBBBBBBBBBBBBBBRRBBRRRRRRRRB B BB BB BB BB BB BB RRBRRRRRRRBB BB R BB BBBBRRH
// Comstructors

public Port(String name, BitFilter bf, int MessageType)
{

Init

ialise(name, bf, MessageType, "");

public Port(

String name, BitFilter bf, int MessageType, String description)

{
Init

ialise(name, bf, MessageType, description);

/// <summary>

/// Creates a new port from an XML string.
/// </summary>

/// <param mame="port"></param>

public Port(XmlElement port)

s

{

String portName = port.GetAttribute("name");
String portDesc = null;// = port.GetAttribute("description"
String portFilter = port.GetAttribute("filter");
//MessageBoxz.Show("Port Init" + portName);
int portMT;
try
{

portMT = Intl16.Parse(port.GetAttribute("messagetype"));
catch (Exception)
{

throw new Exception(

"Could not parse messagetype from XML: \n" + port.OuterXml);

}
BitFilter bf = new BitFilter (portFilter);
if (portDesc == null)

Initialise(portName, bf, portMT, "");
else

Initialise(portName, bf, portMT, portDesc);
//MessageBoz.Show("Port created: " + portName);

}

/) RRRBBBBBBBBRBBBBBBRBRARARARRRRBB BB BB BB BBB BB R RRRARARRRRBBB BB B RBBBR R
// Property accessors

/// <summary>

C.9 Port.cs 104

82 /// Returns the message type used by this port.

83 /// </summary>

84 public int MessageType

85 {

86 get { return messageType; 1}

87

88

89 /) T T T -
90

91 /// <summary>

92 /// Returns the port name.

93 /// </summary>

94 public String Name

95

96 get { return name; }

97

98

99 /) T T T o oo
100

101 /// <summary>

102 /// Returns the port description

103 /// </summary>

104 public String Description

105 {

106 get { return description; 3}

107

108

109 /) T T o oo
110

111 /// <summary>

112 /// Returns the BitFilter used by this port

113 /// </summary>

114 public BitFilter Filter

115 {

116 get { return parser; }

117

118

119 /) T -
120

121 /// <summary>

122 /// Gets the current value of the port

123 /// </summary>

124 public int CurrentValue

125

126 get

127 {

128 changed = false;

129 return currentValue;

130 }

131 }

132

133 /) T -
134

135 /// <summary>

136 /// Sets the port walue and accesses the current port wvalue.
137 /// </summary>

138 public int SetValue

139

140 get { return setValue; }

141 set

142 {

143 setValue = value;

144 changed = true;

145

146 }

147

148 /) T T T T -
149

150 /// <summary>

151 /// Sets a mew port walue and returns the current port walue
152 /// </summary>

153 public int Value

154

155 get { return CurrentValue; }

156 set { SetValue = value; 1}

157 }

158

159 /T T T o oo ——— -
160

161 /// <summary>

162 /// Determines whether the port has been modified by a status message
163 /// </summary>

164 public bool Changed

165 {

166 get { return changed; }

167

168
169

170
171

172
173
174
175
176
177
178
179

181
182
183
184
185
186
187
188

189
190
191
192
193
194
195
196

197
198

199

200
201

202
203
204
205
206
207
208
209
210
211

212
213

214
215

216
217
218
219
220
221
222

223
224

225
226

227
228
229

231
232
233
234
235
236
237
238
239

240
241

242
243

244

C.9 Port.cs

105

/) REBBBBBBBRRBRBBRBRRRRRRRRRRRRRER BB BB BRBRBRRRRRRRRRRBRBRBB BB RBRBRRRHRH
// Private methods

/77
/77
/77
/77
/77
/77
/77

{

}

<summary >
Inttialises
</summary >

<param name="name">Port Name</param>
<param name="bf">BitFilter structure to use</param>
<param name="mt">Message type used by this port</param>

the port and checks all

input values

<param name="desc">Short description</param>
private void Initialise(

String name

if (name =

>

BitFilter bf, int mt,

null || name.Contains(

throw new Exception(

"Port NAME cannot be null or contain spaces or periods."

if (bf ==

"BitFilter cannot be NULL in port

null)
throw new Exception(

if ((mt < 0 && mt > 7)

throw new Exception(

this.name =
this.parser

name . ToLower ();

bf;

this.messageType = mt;

this.description

currentValu
setValue =

e

= 0;

H
currentValue;

String desc)

" ") || name.Contains/(

"Message type must be between O and 7."

initialisation:

))

);

+ name);

);

/) BABBRABBRRBBRRBBRRRBRRRBBRRBRRABBRRBBRRBBRRRBRRRBBRRBRRRBBRRBRRABRIH
// Public methods

/77
/77
/77
/77
/77

public void ExtractInfo(CANPacket msg)

{

{

/77
/77

}

<summary >

Passes the BitFilter over the given status message and updates the
current information.

</summary >

<param name="msg"></param>

currentValue
if (currentValue == setValue)
changed = false;

<summary >

Adds the port’s SetValue to the CAN packet to be sent

</summary >

<param mname="msg">CAN message to be sent.</param>
public void AddInfo(CANPacket msg)

parser.AddValue(msg,

<summary >

= parser.ParseValue(msg);

setValue);

Gets a string representation of the port.

</summary >

<returns ></returns>
public override string ToString()

String str
"Port:
", MT:
", Val:
", BF:

" + Filter.ToString();

+ Name +
+ MessageType +
+ CurrentValue +

//MessageBoxz.Show(str);

return str;

} // pudblic class Port

} // namespace ModularRobot

Appendix D

Sample Program

D.1 Overview

This appendix contains the configuration file, test program and output log file for
the Modular Robot. The program shows the current functionality of the distributed

controllers and how it is harnessed by the communication interface.

O©OoONOOTPd WN -

D.2 Sample XML Configuration File 107

D.2 Sample XML Configuration File

Listing D.1: A clever MATLAB function.

<?xml version = "1.0"7>

<!-- A4 prototype robot description -->

<l-- 7r0obotCAN.xml -->

<! -- Root node is the type of interface used to communicate with the robot.
<CAN

type="LawicelCANUSB"
firmware="0.0.14"
baudrate = "125"
readinterval = "5"
writeinterval = "5"
readtimeout = "500"
>
<!-- CAN Node configuration -->
<l --
<node
name = "nodl"
type = "Master"
number = "O"
description = "This type of node is not supported."
></node>
-=>
<node
name = "DCO"
type = "DCMotor"
number = "O"
description = "Prototype DC Motor module"

<port
name = "speed"
description = "Accesses the speed mode of the DC motor"
filter = "B1:S0:L8"
messagetype = "0"
/>
<port
name = "direction"
description = "Accesses the direction field of the DC motor"
filter = "B2:S0:L8"
messagetype = "1"
/>
<port
name = "position"
description = "Accesses the position mode of the DC motor"
filter = "B3:S0:L8"
messagetype = "2"
/>
<port
name = "auto"
description = ""
filter = "BO:S7:L1"
messagetype = "3"

/>
</node>

<node
name = "STEPO"
type = "StepperMotor"
number = "0O"
description = ""

<port
name = "position"
description = "Accesses the position mode of the DC motor"
filter = "B3:80:L8"
messagetype = "2"
/>
<port
name = "speed"
description = "Accesses the speed mode of the DC motor"
filter = "B1:S0:L8"
messagetype = "0"
/>
<port

-=>

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

D.2 Sample XML Configuration File

108

name = "direction"
description = "Accesses the direction field of the DC motor"
filter = "B2:S0:L8"
messagetype = "1"
/>
<port
name = "auto"
description = ""
filter = "BO:S7:L1"
messagetype = "3"
/>
</node>
<node
name = "PPO"
type = "ProportionalPneumatic"
number = "0O"
description = "Prototype proportional pnuematic module"
>
<port
name = "valvel"
description = "Valve control 1"
filter = "B1:S0:L1"
messagetype = "1"
/>
<port
name = "valve2"
description = "Valve control 2"
filter = "B1:S1:L1"
messagetype = "1"
/>
<port
name = "valve3"
description = "Valve control 3"
filter = "B1:S2:L1"
messagetype = "1"
/>
<port
name = "valve4d"
description = "Valve control 4"
filter = "B1:S3:L1"
messagetype = "1"
/>
<port
name = "valveAll"
description = "All valves"
filter = "B1:S0:L4"
messagetype = "1"
/>
</node>
<node
name = "P2WO"
type = "2WayPneumatic"
number = "O"
description = "Prototype 2 way pneumatic module"
>
<port
name = "valvel"
description = "Valve control 1"
filter = "B1:S0:L1"
messagetype = "1"
/>
<port
name = "valvel2"
description = "Valve control 2"
filter = "B1:S1:L1"
messagetype = "1"
/>
<port
name = "valve3d"
description = "Valve control 3"
filter = "B1:S2:L1"
messagetype = "1"
/>
<port
name = "valve4"
description = "Valve control 4"
filter = "B1:S3:L1"

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

D.2 Sample XML Configuration File

109

messagetype = "1"
/>
<port
name = "valveAll"
description = "All valves"
filter = "B1:S0:L4"
messagetype = "1"
/>
</node>
<node
name = "SENSO"
type = "Sensor"
number = "O"
description = "Prototype sensor module"
>
<port
name = "analogel"
description = ""
filter = "B1:S0:L8"
messagetype = "1"
/>
</node>
</CAN>

00N OO WN -

= e
N = O ©

WNDNNDNNNNDNNDNRRER B
O WO N NPRWNFE O OWHON O O bW

W w
N =

NN NO OO DO OO OO0 OO 0T0 0O B D DD DD DD 0w W W W W W
NFE OOWONOONP WNFP,LOOWOWNOOUTIPWNRLOOONOOE WNRFE OO NG W

D.3 Sample Program Listing

110

D.3 Sample Program Listing

Listing D.2: A clever MATLAB function.

using System;
using System.Threading;

namespace ModularRobot

public static class Program

{

/// <summary>

/// The main entry point for the application.

/// </summary>
[STAThread]
static void Main()

MRModel robot = new MRModel();

robot.ConfigFileName
if (robot.Open() < 0)

return;

Console.WriteLine (

"MRModel Initialised.\nConfig: "

"./robotCAN.xml";
// Ensure device

s operational

+ robot.ConfigFileName);

/) T oo oo
robot.Set("PPO", "valveall", 0);
robot.Set("P2WO", "valveall",)
for (int i = 1; i <= 8; i = 1 2)
{
robot.Set("PPO", "valveall", i);
robot.Set ("P2WO", "valveall", i);
if (robot.Get("PPO", "valveall") != i)
Console.WriteLine("Error PPO Value: " + i);
if (robot.Get("P2WO", "valveall") != i)
Console.WriteLine("Error P2WO Value: " + i);
Thread.Sleep(1000);
}
Console.WriteLine (
"PPO valvel: " robot.Get("PPO", "valvel").ToString()
Console.WriteLine (
"PPO valve2: " robot.Get("PPO", "valve2").ToString()
Console.WriteLine (
"PPO valve3: " robot.Get("PPO", "valve3").ToString()
Console.WriteLine (
"PPO valved: " robot.Get ("PPO", "valve4").ToString()
/S T e e e e e -
robot.Set("DCO", "speed", 1);
Random rand = new Random();
for (int i = 0; i < 3; i++)
{
int setpos = rand.Next(OxFF);
Console.WriteLine (
"Setting DCO position: " + setpos.ToString());
robot.Set ("position", setpos);
Thread.Sleep(2000
Console.WriteLine (
"Final DCO position: " + robot.Get("DCO", "position"
}
/) T T T o T e
Console.WriteLine (
"Sensor analogel value: " + robot.Get("SENSO", "analogel"

robot.Close();

)
)
)
)

))

))5

D.3 Sample Program Listing 111

73 }

75 }

D.4 Console Output

112

D.4 Console Output

MRModel Initialised.
Config: ./robotCAN.xml
PPO valvel: O

PPO valve2: O

PPO valve3: O

PPO valved: 1

Setting DCO position: 117
Final DCO position: 117
Setting DCO position: 66
Final DCO position: 66
Setting DCO position: 211
Final DCO position: 151

Sensor analogel value: 9

D.5 Run-Time Log 113

D.5 Run-Time Log

The following is a enhanced version of the log file produced by the program. The
standard log file output generates the Timestamp and Log Message columns, however
the Delay and Message purpose columns were generated by importing the log file into

an Excel spreadsheet and formatting it so that it was more intuitive to the reader.

Log Created: 26/10/2006¢ 10:26:57 PM
Time Delay Log Message Message purpose

(hh:mm:ss) (ms) (s

09:10:12 . 609 0.000 |CRANUSB Initialised TX & RX queues ready
09:10:12 . 625 0.016 |Engueue: 10120000 Command to Proportional Pneumatic
09:10:12 . 625 0.000 |Engueus: 0C120000 Command to 2 Way Pneumatic

:10:12 . 625 0.000 |Engueue: 001 Command to Proportional Pheumatic

:10:12 . 625 0.000 |Engueuse: 20001 Command to 2 Way Pneumatic
09:10:12 . 625 0.000 |Engueue: Status request - Proportional Pneumatic
09:10:12 . 625 0.000 TX: 101 2 Transmit

:10:12 . 640 0.015 |TX: ocl 2

:10:12 . 656 0.01e |T¥%: 101 2
00:10:12 . 671 0.015 |Tx: ocl 2
09:10:12 . €87 0.016 |TX: 100 0 O Status request transmit - Proportional Pneumatic
09:10:12 . 703 0.016 |RX: 501 8 2001223344556620 Status request reply - Proportional Pneumatic
09:10:12 . 703 0.000 |Dequeue: 50182001223344556620 Queue read

:10:12 . 703 0.000 |Engueue: 0 Status request - 2 Way Pneumatic
09:10:12 . 718 0.015 |TX: 0CO 0 O Status request transmit - 2 Way Pneumatic
09:10:12 . 734 0.016 |RX: 4Cl 8 2001223344556¢618 Status request reply - 2 Way Pneumatic
09:10:12 . 734 0.000 |Dequeue: 4C182001223344556618 Queue read
09:10:13 . 734 1.000 |Engueus: 10120002 Next value to Proportional Pneumatic
09:10:13 . 734 0.000 |Engueue: 0C120002 Next value to 2 Way pneumatic
09:10:13 . 734 0.000 |Enqueus: Status request - Proportional Pneumatic

:10:13 . 750 0.0l6 |[Tx: 101 2

:10:13 . 765 0.015 |TX: 0Cl 2
09:10:13 . 781 0.0l6 |[TX: 100 0 O
09:10:13 . 796 0.015 |RX: 501 8 2002223344556620
09:10:13 . 7%¢6 0.000 Dequeue: 0182002223344556

00

09:10:13 . 7%

s}

.000 |Engueue:

:10:13 . 812 0.0l6 |TX: OCO
09:10:13 . 828 0.0l6 |RX: 4Cl ¢
09:10:13 . 828 0.000 [Degueus:
09:10:14 . 828 1.000 |Engueue:
06:10:14 . 828 0.000 |Engueue:
09:10:14 . 828 0.000 Enqueue:
08:10:14 . 0.015 |TX%: 101 2
09:10:14 . 0.016 |TX: 0Cl 2
9:10:14 . 0.0le |TX: 100 0 O
09:10:14 . 0.015 |RX: 501 8

08:10:14 .
09:10:14 .8

s}

.000 |Dequeue:

=}

.000 |Enqueue:

08:10:14 .9 0.016 |TX: 0CO O
09:10:14 .9 0.015 |RX: 4Cl 8
09:10:14 .9 0.000 Dequeue: 4

09:10:15 . 921
09:10:15 . 921

.000 |Enqueue:

(<IN

.000 Encueue:

06:10:15 . 921 0.000 |Engueue:

:10:15 . 937 0.01le TX: 101 2
09:10:15 . 953 0.01e |T%: 0Cl 2
09:10:15 . 968 0.015 TX: 100 0 O
09:10:15 . 984 0.016 |RX: 501 8 2008223344556020
09:10:15 . 964 0.000 Dequeue: 0182008223344556620
09:10:15 . 984 0.000 |Engueue: 00
09:10:16 . 000 0.0le |TX: 0CO 0 O
09:10:16 . 015 0.015 |RX: 4Cl 8 2008223344556018
09:10:16 . 015 0.000 |Degueue: 4C162008223344556618

09:10:17 . 015
09:10:17 . 031

.000 Encueue: 1000
.0le |TX: 100 0 O

[STe

D.5 Run-Time Log 114

09:10:17 . 046 0.015 RX: 501 8 2008223344556620

09:10:17 . 046 0.000 |Deqgueue: 50182008223344556620

09:10:17 . 046 0.000 |Engueue: 1000

09:10:17 . 062 0.016 |TX: 100 0 O

09:10:17 . 078 0.016 |RX: 501 8 2008223344556620

09:10:17 . 078 0.000 |Dequeue: 50182008223344556620

09:10:17 . 078 0.000 |Engueue: 1000

09:10:17 . 093 0.015 TX: 100 0 O

09:10:17 .109 0.016 RX: 501 8 2008223344556620

09:10:17 . 108 0.000 |Dequeue: 50182008223344556620

09:10:17 . 109 0.000 |Engueue: 1000

DG IE0ERT STEE 0.016 |TX: 100 0 O

09:1 . 140 0.015 |RX: 501 8 2008223344556620

09: . 140 0.000 |Dequeue: 50182008223344556620

09: . 156 0.016 |Engueue: 042400010075 Command to DCMotor
09:] . 156 0.000 |Tx: 042 4 00010075

09: . 156 2.000 Enqueue: 0400

09: . 156 0.000 |TX: 040 0 O

09:1 =171 0.015 RX: 441 8 20FF017580556608

09:] . 171 0.000 |Dequeue: 441820FF017580556608

09: « 171 0.000 |Engueue: 042400010042

09: 187 0.016 |TX: 042 4 00010042

09:1 . 8089 1.422 |ERROR: 'Bus Error' Occasional bus error acceptable
09: 171 0.562 |Enqueue: 0400

09: 187 0.016 TX: 040 0 O

09:] 203 0.016 |RX: 441 8 20FF024280556608

09:1] 203 0.000 Dequeue: 441820FF024280556608

09:1 203 0.000 |Engueue: 0424000100D3

09:10 218 0.015 TX: 042 4 000100D3

09:1 203 1.885 |Engueue: 0400

09:] 218 0.015 TX: 040 0 O

09: 234 0.016 |RX: 441 8 2001029780556608

09z] 234 0.000 Dequeue: 44182001029780556608

09: 234 0.000 |Engueue: 1400 Status request to Sensor
09: 250 0.016 TX: 140 0 O

09:1 265 0.015 |RX: 541 8 2009223344556628

09:1] 265 0.000 Dequeue: 54182009223344556628

09:1 265 0.000 |Closing CANUSB. Preparing to close the CANUSB device
09:1 265 1.000 |Closed OK All buffers empty, device closed OK

