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Abstract 
We present in this paper novel techniques that determine 
the semantic relationships among genes and gene 
products. We implemented these techniques in a 
middleware system called GOtoGene, which resides 
between user application and Gene Ontology database. 
Given a set S of genes, GOtoGene would return another 
set S   of genes, where each gene in S  is semantically 
related to each gene in S . The framework of GOtoGene 
refines the concept of Lowest Common Ancestor by 
defining the concept of Semantically Relevant Lowest 
Common Ancestor using the concept of existence 
dependency. We evaluated GOtoGene experimentally 
and compared it with three other methods. Results 
showed marked improvement.  

Keywords: middleware; Gene Ontology; semantic 
similarity 

1 Introduction  
Life science ontologies are used in different types of 
applications. One of these applications is the annotation 
of biological objects such as gene products and proteins. 
Biological objects are annotated with ontology concepts 
to semantically describe their properties. The Gene 
Ontology (GO) (Gene Ontology 2011) has emerged as 
one of the most important ontology concept and the most 
widely used bio-ontology. Many genomic databases use 
GO annotations, which assign genes to term nodes to 
describe these genes. GO ontology is structured as a 
Directed Acyclic Graphs (DAG). In this graph, GO terms 
are represented by nodes and the different hierarchical 
relations between the terms (mostly “is-a” and “part-of” 
relations) are represented by edges. The “is-a” relation 
represents the fact that a given child term is a subtype of 
a parent term, and the “part-of” relation represents part-
whole relationships. The lower in the DAG a term is 
located, the more specific it is. When a gene product is  
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annotated using GO, the DAG displays the term node(s) 
describing this gene product in such a way that reflects 
how this gene product is related to other gene products. 
Thus, annotation of a gene with a GO term is an 
indicative that this gene is closely related to all other 
genes annotated with the same GO term and the genes 
annotated with ancestors and descendants of this GO 
term.  

Biologists often need to determine the semantic 
similarities and relationships between genes. Semantic 
similarity measures in GO is widely used to identify the 
relationships between genes and gene products. That is 
because genes whose GO terms are semantically related 
tend to have common properties. The correlation between 
protein/gene expression and GO semantic similarities 
have been demonstrated in several studies such as 
(Sevilla et al. 2005, Wang et al. 2007). Functional 
similarity describes the similarity between genes/gene 
products based on the similarity between the GO terms 
annotating these genes/gene products. The similarity 
between two genes is the maximal semantic similarity of 
two GO terms, where one of the terms annotates one of 
the genes and the other annotates the other gene. That is, 
determining the relationships between GO terms enables 
the quantification of the semantic similarity of the gene 
products annotated with these terms. Thus, functional 
similarity between genes can be determined using a 
semantic similarity measure, since GO terms are 
organized in DAG.  
  The semantic relationships between a set of 
genes corresponds to that between the GO terms 
describing these genes, if each gene is annotated by only 
one GO term. But most genes have several annotation 
GO terms. Therefore, we need a strategy and mechanism 
to determine the relationships between all the 
occurrences of genes under consideration. In this paper, 
we propose a middleware system called GOtoGene that 
determines the semantic relationships between gene 
products and considers all the annotation terms of each 
gene product.  
    Given a set S of genes, GOtoGene would return a 
another set S   of genes, where each gene in S  is 
semantically related to each gene in S . Towards this, 
GOtoGene would identify the GO terms that have the 
closest semantic relationships with all GO terms 
annotating the genes in set S. It would first determine the 
most significant Lowest Common Ancestor (LCA) term 
of the terms annotating the genes in S. Towards this, the 
framework of GOtoGene refines the concept of LCA by 
defining the concept of Relevant Lowest Common 
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Ancestor (RLCA) and the concept of Semantically 
Relevant Lowest Common Ancestor (SRLCA). We 
observe that the terms annotating a certain set of genes 
have existence dependency relationships with the 
SRLCA t of these terms. That is, their existence in the 
GO graph is dependent on the existence of t. We 
developed this observation into formal sets of rules and 
techniques that compute the semantic relationships 
among GO terms.  

2 Relates WORK 
Pesquita (2008, 2009) defines a semantic similarity 
measure as a function that returns a numerical value 
reflecting the closeness in meaning between two 
ontology terms (or two sets of terms) annotating two 
biological entities (Pesquita et al. 2009). The authors 
distinguish between the comparison of two ontology 
terms and two sets of ontology terms. GOAT (Bada et al. 
2004) proposes the mining of the Gene Ontology 
Annotation (GOA) of a database for co-occurrence of GO 
terms in order to acquire associations between the terms. 
Using this method, 600,000 associations were identified, 
excluding unreliable associations as well as the 
hierarchical relations that are explicitly represented in 
GO. 
  Node-based measures are the most cited 
semantic similarity measures. This approach exploits the 
information content (IC) of two terms being compared 
and of their Lowest Common Ancestor (LCA) (Coute et 
al. 2003, Lee et al. 2004, Lin 1998, Resnik 1999). The 
information content of a term is based on its frequency or 
probability of occurring in a corpus. Resnik (1999) uses 
the negative logarithm of the probability of a term to 
quantify its information content. Thus, a term with a high 
probability of occurring has a low IC. Very specific 
terms that are less frequent have a high IC. Resnik's 
similarity measure consists of determining the IC of all 
common ancestors of two terms and selecting the one 
with maximal value, since it is the most specific common 
ancestor of the two terms. That is, if two terms have an 
ancestor with high information content, they are 
considered to be semantically related. Since the 
maximum of this IC value can be greater than one, Lin 
(1998) introduced a normalization term into Resnik's 
measure. Schlicker (2006) improved Lin's measure by 
using a correction factor based on the probability of 
occurrence of the LCA. A general ancestor of terms 
should not have high contribution to the similarity of the 
terms (Schlicker et al. 2006). GOSim (Frohlich 2007) 
extended Resnik's similarity concept by considering all 
terms having the highest information content, based on 
the notion of disjunctive common ancestors. Lord (2003) 
computes the information content for each GO term as a 
measure of the degree of its specificity. A term that 
describes many genes (i.e., frequently used) is not 
specific and vice versa. Therefore, (Lord 2003) uses the 
negative logarithm of the frequency of each term to 
quantify its information content.  
          However, node-based measures have limitations 
such as: (1) they do not take into account the distance 
separating term nodes from their LCA (Frohlich 2007), 
(2) they use IC as the major factor for determining the 

semantic similarity of term nodes, which is inappropriate 
for some types/scenarios of biological ontologies, (3) 
some of them rely only on the number of common 
ancestor nodes, while overlook their semantic 
contributions to the two nodes under consideration, and 
(4) many of these methods overlook the information 
contained in the structure of the ontology and concentrate 
only on the information content of a node. We take 
(Benabderrahmane et al. 2010, Frohlich 2007, Wang et 
al. 2007) as sample of current semantic similarity 
measures and overview them below. 

           Similarity method proposed by (Wang et al. 
2007): The semantic similarity between terms A and B, 
SGO (A, B), is defined as:                                          
                                                    

SA(t) is the contribution of term t   to the semantics of A:     

 

 we is the semantic contribution factor for edge e linking 
term t with its child term  t  (0< we <1).   

           IntelliGO (Benabderrahmane et al. 2010): Given 
two terms ti and tj represented by their vectors 

ie and 

je respectively, the dot product between the base vectors 
is: ji ee  *                                     

Depth(LCA) is function associating the LCA with its 
maximal depth. MinSPL(ti, tj) is the minimal shortest 
path length between ti and tj. 

GOSim (Frohlich 2007): It extended Resnik's similarity 
concept by considering all terms having the highest 
information content, based on the notion of disjunctive 
common ancestors:  

 
 

 
3 Outline of the Approach 

In the framework of GOtoGene, the structure of GO is 
described in terms of a graph, which we call GO Graph. 
In this graph, GO terms are nodes and the relationships 
between the terms are edges. For example, Fig. 1 
presents a fragment of a GO Graph showing the 
ontological relationships of 29 GO terms. GOtoGene 
accepts Keyword-based queries with the form Q (“g1”, 
“g2”, .., “gn”), where gi denotes a gene (or a gene 
product) keyword. 

        User selects an input (the query, which is composed 
of genes that are annotated to GO). GOtoGene would 
then map these genes to a set of GO terms. Let ST denote 
these GO terms. GOtoGene would then determine the 
Relevant Lowest Common Ancestors (RLCA) of the set 
ST. It would then find the Semantically Relevant Lowest 
Common Ancestors (SRLCA) of the set ST. Let S1 be a 
set of GO terms annotating a gene g1 and let S2 be another 
set of GO terms annotating a gene g2. For each term Ti 
from set S1, the concept of RLCA determines the most 
relevant term Tj from set S2 to Ti and then identifies their  
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Fig. 1: A fragment of GO Graph showing the ontological 
relationships of 29 GO terms. Blue edges denote “is-a” relations 

and red edges denote “part-of” relations. 

 

RLCA. If more than one RLCA have been identifies, the 
concept of SRLCA would identify the most significant 
one using the concept of existence dependency. That is, 
the SRLCA is a LCA, on which the existence of Tj and Ti 
depends in GO graph. GOtoGene would then convert 
back to genes based on annotations and retrieved back to 
the user. The genes annotated to the SRLCA are the most 
semantically related to the user’s input genes. 

 Notation 3.1, Keyword Context (KC): A KC is a 
GO term that is annotated to a query gene product. 
For example, consider Fig. 1 and the query 
Q(“JAG1”). The term organ morphogenesis 
(GO:0009887) is a KC because the gene “JAG1” is 
annotated to it. 

Let SKC be a set of KCs annotating user’s input genes 
(i.e., query).  To construct the answer for this query, 
GOtoGene needs to identify the SRLCA of the set SKC 
based on the concept of existence dependency. Towards 
this, GOtoGene will need to check all “part-of” 
relations in GO graph, because: “part of has a specific 
meaning in GO and a part of relation would only be 
added between A and B if B is necessarily part of A: 
wherever B exists, it is as part of A, and the presence of 
the B implies the presence of A” (Gene Ontology 2011). 
“part-of relation embodies some aspects of existence 
dependency. A part-of relation with existence dependent 
parts can simply be replaced by existence dependency: In 
case of existence dependent components, the existence 
dependency relation is identical to the part of relation” 
(Snoeck and Dedene 1998). Fig. 2 is an overview of our 
approach. 

 
 
 
Fig 2: The sequential processing steps for answering a query 

4 Constructing part-of Graph 
Since not all “part-of” relations are explicitly expressed 
in a GO Graph (some can be inferred from the graph), 
GOtoGene converts the GO Graph into a graph called 
Part-Of Graph (POG), which contains only the explicit 
and inferred “part-of” relations. The LCA of KCs will be 
determined from the POG and not from the GO Graph. A 
POG is a GO Graph after: (1) removing all its relations 
except for the “part-of” ones, and (2) adding the inferred 
“part-of” relations. The terms A and B are connected by a 
“part-of” relation in the POG, if the GO Graph either 
states this relation expressly or it can be inferred from the 
graph using the following two inference rules described 
in (Gene Ontology 2011): (1) if A “is-a” B and B is “part-
of” C, A is “part-of” C, and (2) if A is “part-of” B and B 
“is-a” C, A is “part-of” C. Fig. 3 shows a fragment of a 
POG derived from the GO Graph in Fig. 1.  For example, 
since in Fig. 1: (1) the term multicellular organismal process 
(GO:0032501) “is-a” the term biological process 
(GO:0008150), (2) the term multicellular organismal development 

(GO:0007275) “is-a” the term multicellular organismal process 
(GO:0032501), and (3) the term system development 
(GO:0048731) is “part-of” the term multicellular organismal 

development (GO:0007275), then in Fig. 3 the term system 

development (GO:0048731) is “part-of” the term biological process 
(GO:0008150). In Fig. 3, each term node shows the 
genes that the term annotates. 

 We observe that the specificity of a term (with regard 
to its “is-a” relations) influences its semantic 
relationships with other terms. This specificity 
differentiates “general” functions that are close to the 
root from specific detailed ones.  Therefore, we 
determine the specificity of each term. “is-a” is a simple 
type-subtype relation between two GO terms (Gene 
Ontology 2012). Consider that: (1) A"is-a” A, (2) A “is-
a” C, (3) B ”is-a” B, and (4) B ”is-a” C. Both of the 
terms A and B inherit the characteristics and properties of 
their supertype C. Therefore, intuitively, A and B have 
the same specificity. Since A  and B inherit from the 
characteristics and properties of terms that have the same 
specificity (the terms A and B), A  and B  have the same 
specificity also. Thus, the specificity of a term node is the 
number of “is-a” relations that connect it with the root 
term node (its “is-a” distance to the root). For example, 
recall Fig. 1. The root term biological process (GO:0008150) 
has its own specificity. Since both of the terms multicellular 

organismal process (GO:0032501) and developmental process 
(GO:0032502)  inherit the same characteristics from their 
supertype GO:0008150, they both have the same 
specificity1. As another example, the terms kidney development 
(GO:0001822), system development (GO:0048731), multicellular 

organismal development (GO:0007275), anatomical structure morphogenesis 
(GO:0009653), and anatomical structure development (GO:0048856) 
have the same specificity 1 . If a term has multiple 
inheritances, only its shortest distance to the root is 

                                                        
1  Alternatively, we can determine that these terms have the 
same specificity, because they have the same distance to the 
root based on their is-a relations. 

Constructing a 
graph based on 
part-of relations 

 

Determining the 
RLCA of KCs from 
the part-of graph  

Determining the SRLCA 
of KCs from the part-of 
graph  
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considered. In the POG in Fig. 3, each set of terms that 
have the same specificity are colored with the same color 
for easy reference. For example, the terms kidney development 
(GO:0001822), system development (GO:0048731), and anatomical 

structure morphogenesis (GO:0009653) are colored with the 
same color as an indicative that they have the same 
specificity.  

 
Fig. 3: POG constructed from the GO Graph in Fig. 1 after 
coloring each set of terms that have the same specificity with the 
same color. Each term node includes the genes annotated to the 
term. 
 

5 Determining RLCA 
In this section, we describe how GOtoGene determines 
the most significant Lowest Common Ancestor of terms 
annotating input genes (i.e., keywords of a query). We 
first formalize the notion of LCA in Definition 5.1.  

 
Definition 5.1, Lowest Common Ancestor 
(LCA): Let: (1) N be the set of GO terms in a 
GO Graph, (2) Ti, Tj, Tx   N, (3) Tx is the 
LCA of Ti and Tj (denoted as LCA(Ti, Tj)), and 
(4) descendant-or-self(Ti, Tx) denotes that Ti is 
a descendant of Tx or is equal to Tx.     If: 
 descendant-or-self(Ti, Tx) = true, and 
 descendant-or-self(Tj, Tx) = true, and 
   TN, if descendant-or-self(Ti, T ) = 

true and descendant-or-self(Tj, T ) = 
true, then descendant-or-self(Tx, T ) = 
true. 

We now introduce a notion for two or more terms that 
annotate at least one same gene product. 
 

Notation 5.1,
yx TT ANTNANTN  : Denotes GO 

terms Tx and Ty annotate at least one same-
gene. That is, there is at least one gene 
annotated to both Tx and Ty. For example, 
consider Fig. 3.  The gene “LUX1” is 
annotated to GO terms GO:0072006, 
GO:0072077, and GO:0072283. Therefore, 

0072283:GO0072077:GO0072006:GO ANTNANTNANTN   

We now refine the concept of LCA and introduce the 
concept of Relevant Lowest Common Ancestor (RLCA). 
Let g1, g2, …gn be a set of input genes selected by the 
user (i.e., keywords of a query). Let S be the set of terms 
annotating the input g1, g2, …gn. A RLCA is a LCA of a 
subset S    S where the terms of S  are meaningfully 
related to each other and contain at least one occurrence 
of each of the genes. We present below two scenarios 
that describe what we mean by meaningfully related 
terms.  

           Scenario 1: Consider the situation where two GO 
term nodes have no hierarchical relationship with each 
other. Suppose that the LCA of T1 and T2 is Tx as shown 
in Fig. 4. We can regard both T1 and T2 as meaningfully 
related to each other by belonging to Tx.  The RLCA of 
T1 and T2 is Tx. Given two sets of GO terms, where the 
terms in each set fall under the same annotation cluster, 
Definition 4.3 describes how to determine the RLCA of 
each pair from the two sets. 
 

Definition 5.2, RLCA of two nodes: Let the set 
of GO terms in a GO Graph be N. Given A, B 
  N, where A is comprised of nodes having 
the same annotation A, and B is comprised of 
nodes having the same annotation B, the 
RLCA Set C   N of A and B satisfies the 
following conditions: 
   ck   C,   ai   A, bj   B, such that 

ck = LCA(ai,bj ). ck is denoted as 
RLCA(ai, bj ). 

  ai   A, bj   B, if dij = LCA(ai, bj) and 
dij  C, then   ck   C, 
descendant(ck, dij) = true. 

                                                                     

                                                               Tx      
                 
                                                  
                   
                                        T1                                  T2                          

Fig. 4: Relationships between nodes located in adjacent hierarchical 
levels 

 
 

 
 
 

         Scenario 2: As demonstrated by Fig. 5, let there be 
two terms 

2T   and T2, where 
22 TANTNANTNT  . Let the 

LCA of T1 and 
2T   be T  . If Tx is an ancestor of T  , we 

should then conclude that nodes T1 and T2 are not 
meaningfully related to each other, because: (1) T1 is 
more related to

2T   than to T2  (recall that 
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22 TANTNANTNT  ), and (2) the LCA of T1 and T2 is an 
ancestor of the LCA of T1 and 

2T  . Term T  is the RLCA 
of T1 and 

2T  . We formalize this concept in Definition 
5.3. 
 

 

Definition 5.3 : Let CA ANTNANTNANTN  B . 
Node C is relevantly related to node A and not 
to node B if the LCA of nodes A and C is a 
descendant of the LCA of nodes C and B. The 
LCA of nodes C and A is a RLCA. 
 

 

 
Fig. 5: Hierarchical relationships among term nodes of different 
specificities. A node’s color represents its specificity 

 
         Example 1: Consider Fig. 3 and the query 
Q(“LHX1”, “Gga,4082”). As shown in Fig. 3: (1) the 
KCs annotating the gene “LHX1” are nephron development 
(GO:0072006), renal vesicle morphogenesis (GO:0072077), and 
metanephric renal vesicle morphogenesis (GO:0072283), and (2) the 
KC annotating the gene “Gga.4082” is nephron epithelium 

morphogenesis (GO:0072088).           The term GO:0072088 
is more related to GO:0072077 than to GO:0072006, 
because: (1) 0072006:GO 0072077:GO ANTNANTN  , and (2) the 
LCA of GO:0072006 and GO:0072088 (which is 
GO:0048513) is an ancestor of the LCA of GO:0072088 
and GO:0072077 (which is GO:0072009). Therefore, 
GO:0072009 is the RLCA of GO:0072088 and 
GO:0072077 and the genes it annotates (i.e., the genes 
“TFAP2B”, “JAG1”, and “PANDA_003456”) are 
related to both of the input gene keywords “Gga.4082” 
and “LHX1”. Fig. 6 shows the subtree rooted at the 
RLCA node GO:0072009. 

 

 
Fig. 6: GO:0072009 is a RLCA of  GO:0072088 and 

GO:0072077      

          Example 2: Consider Fig. 3 and the keyword query 
Q2(“JAG1”, “LHX1”). The GO terms annotating the gene 
“JAG1” are organ morphogenesis (GO:0009887) and nephron 
epithelium development (GO:0072009).  Recall example 1 for the 
GO terms annotating the gene “LHX1”.  The term 
GO:0072006 is more related to GO:0072009 than to 
GO:0009887, because: (1) 0009887:GO  0072009:GO ANTNANTN  , 
and (2) the LCA of GO:0072006 and GO:0009887 
(which is GO:0008150) is an ancestor of the LCA of 
GO:0072006 and GO:0072009 (which is GO:0048513). 
Therefore, GO:0048513 is the RLCA of GO:0072006 
and GO:0072009 and the genes it annotates (i.e., the 
genes Ci-FoxI-c, FKH-4, and fkh-5) are related to both of 
the input genes “JAG1” and “LHX1”. Fig. 7 shows the 
subtree rooted at the RLCA GO:0048513. 
 

 
Fig. 7: GO:0048513 is a RLCA of GO:0072006 and GO:0072009 

 

  We constructed an algorithm called GetRLCA 
(see Fig. 8) that determines the RLCA for an input set of 
genes. Function getAnnotations (see line 1) returns the 
terms annotating the input genes and stores the results in 
set S . Line 2 stores in set S   the duplicate annotations in 
set S . In line 6, function GetLCA (see Fig. 9) returns the 
LCA of an input set of annotations, and function 
getAncestors returns all ancestors of the annotations. In 
lines 6 and 7, if the LCA of nodes     and SS   is an 
ancestor of the LCA of nodes    and SS  , line 7 will 
return the later LCA as the RLCA. 
 
 
GetRLCA (g1, g2, …, g3) { 
1. )...,,,( 21 ngggionsgetAnnotatS   
2.  
3. for each term node n  S   
4.          
5.          for each term nodes ni, nj   S   
6.   
7.                               
 }                   

Fig. 8: Algorithm GetRLCA 
 

GetLCA (T1, T2, …, Tn) { 
1.  
2.  
3.            
} 

Fig. 9: Subroutine GetLCA 

)))(,(())(,( SSnGetLCArsgetAncestoSSnGetLCAif ji 

)(SdistinctSS 

)()( nannotationSdistinctS 

))(,( SSnGetLCARLCA j 

)(...)()( 21 nTrsgetAncestoTrsgetAncestoTrsgetAncestoS 
)( nullSif 

)(),...,,( 21 SantAllgetDescendTTTLCA n 

in

jn
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6 Determining SRLCA 
From the set of RLCAs, GOtoGene needs to determine 
the ones that are semantically related to the KCs. We call 
each one the Semantic Relevant Lowest Common 
Ancestor (SRLCA) of the KCs. A SRLCA should be 
semantically related to each of the KCs, otherwise the 
answer subtree is considered invalid. 

We use the notation SRKC to denote the set of 
terms that are semantically related to the KC. The 
notation T  SRKC denotes that term T is semantically 
related to the KC. In order for a RLCA  SRKC (i.e., to 
be SRLCA), we observe that: (1) the RLCA should have a 
different specificity than the KC, and (2) the path from 
the RLCA to the KC in the GO Graph should not include 
two or more terms with the same specificity. For 
example, recall the query in example 1. As described in 
the example, the term GO:0072009 is a RLCA of the 
KCs GO:0072088 and GO:0072077. However, 
GO:0072009SRGO:0072077, because its specificity is the 
same as the specificity of  GO:0072077. Therefore, 
GO:0072009 is not a SRLCA for GO:0072077. Based on 
these observations, we introduce proposition 6.1 below.  

 
Proposition 6.1: SRLCA: In order for a RLCA 
to be a SRLCA: (1) its specificity should be 
different than the specificities of the KCs, and 
(2) the path in the GO Graph from the RLCA 
to each of the KCs should not include two or 
more terms with the same specificity. 
 

Notation 6.1, SPECx: SPECx denotes the 
specificity of GO term x. 

 
 

We prove observation/proposition 6.1 heuristically as 
follows. First, we prove: if a RLCA  SRKC, then 
SPECRLCA   SPECKC. That is, in order for a RLCA to be 
SRLCA, its specificity should be different than the 
specificity of the KC. We are going to validate this 
observation by checking whether it conforms to the 
structural characteristics of existence dependency. The 
concept of existence dependency was first proposed for 
Entity-Relationship modeling (Elmasri, and Navathe 
2011). An object x is existence-dependent on an object y 
if the existence of x is dependent on the existence of y 
(Widjaya et al. 2003). The existence dependency concept 
and the SRKC concept have correspondences: both denote 
that an object(s) has a strong association with another 
object. SRKC is a set of GO terms, whose existence in a 
POG is dependent on the existence of the KC (or 
conversely, the existence of the KC in the graph is 
dependent on the existence of the set of terms). Snoeck et 
al. (1998) argue that the existence dependency relation is 
a partial ordering of object types (i.e., specificities). The 
authors transform an OO schema into a graph consisting 
of the object types found in the schema and their 
relations. The object types in the graph are related only 
through associations that express existence dependency. 
The authors demonstrated through the graph that an 
object type is never existence-dependent on itself. That is, 
if the two objects Oi and Oj belong to the same type, Oi 

cannot be dependent on Oj and vice versa. This finding is 
in agreement with our proposed rule, when we view: (1) 
a GO term in a GO Graph as an object, and (2) a GO 
term’s specificity as an object’s type. Thus, if a RLCA 
has the same specificity as the KC, the RLCA can never 
be existence-dependent on the KC (and vice versa); 
therefore, this RLCA is NOT SRLCA and the genes 
annotated to it may not be semantically related to the 
genes annotated to the KCs.  

        Second, we prove: If a RLCA is semantically related 
to the KC, then SPECTx  SPECTy where Tx and Ty are 
term nodes located between the RLCA and the KC in the 
POG. We can verify this rule as follows. In order for 
RLCASRKC, all term nodes located between the RLCA 
and the KC in the POG have to be related to the KC. Let: 
(1) term TySRKC, (2) Ty be a descendant of the KC, and 
(3) term Tx be a descendant of Ty. In order for Tx to be 
semantically related to the KC, intuitively Tx has to be 
semantically related Ty, because Ty relates (connects) Tx 
with the KC. If Tx and Ty have the same specificity, then 
Tx  

yTSR (according to the first rule). Therefore, in order 

for Tx to be semantically related to the KC, 
SPECTx SPECTy.  

 
           Example 3: Recall example 1. By applying 
proposition 6.1, GO:0072009 is NOT  a SRLCA for 
GO:0072088 and GO:0072077, because GO:0072009 
and GO:0072077 have the same specificity. Therefore, 
the genes annotated to GO:0072009 (i.e., the genes 
TFAP2B, JAG1, and PANDA_003456) may not be 
semantically related to the input gene keywords 
“Gga.4082” and “LHX1”. 
 

          Example 4: Recall example 2. By applying 
proposition 6.1, the RLCA of GO:0072088 and 
GO:0072077 (i.e., the term GO:0048513) is a SRLCA. 
Therefore, the genes annotated to GO:0048513 (i.e., the 
genes Ci-FoxI-c, FKH-4, and fkh-5) are semantically 
related to both of the input gene keywords “JAG1”and 
“LHX”.   

7 Experimental Results 
We experimentally evaluated the quality of GOtoGene 
and compared it with (Benabderrahmane et al. 2010, 
Frohlich 2007, Wang et al. 2007) (recall their 
descriptions in section 2). We implemented GOtoGene 
in Java, run on Intel(R) Core(TM)2 Dup CPU processor, 
with a CPU of 2.1 GHz and 3 GB of RAM, under 
Windows Vista. The implementation of (Frohlich 2007) 
was released as part of GOSim package (Cran 2012), 
which we used for the evaluation of (Frohlich 2007). We 
implemented the methods of (Benabderrahmane et al. 
2010, Frohlich 2007, Wang et al. 2007) from scratch.  

7.1 Benchmarking Datasets 
Pathways are sets of genes shown to have high functional 
similarity and can be used to validate similarity measures 
(Guo 2006, Nagar and Al-Mubaid 2008, Wang 2004). A 
fully describe a pathway represent the dynamics and 
dependencies among a set of gene/gene products. 
Therefore, we used in our experiments pathways as a 
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reference for evaluating and comparing the similarity 
(and semantic relationships) measures of GOtoGene 
and (Benabderrahmane et al. 2010, Frohlich 2007, Wang 
et al. 2007). Given a set S of genes, a system/method 
should return a set S   of other genes that are 
semantically related to S . In order for sets S and S  to be 
related, S and S  should be part of a same pathway. 

       We used for the evaluation two different 
benchmarks: KEGG and Pfam benchmarks. We selected 
15 groups of highly related Pfam entries (see Table 1) 
from the Sanger Pfam database. We selected a set of 15 
human and 15 yeast diverse KEGG pathways (see Tables 
2 and 3) containing between 10 and 30 genes, which 
were retrieved using the DBGET database. For each 
group, we retrieved the corresponding human and yeast 
gene identifiers from the Uniprot database. Assuming 
that genes belonging to the same KEGG pathway are 
often related to a similar biological process, the similarity 
values calculated for this dataset should be related to the 
BP GO aspect. And, assuming that genes which share 
common domains in a Pfam clan often have a similar 
molecular function, the similarity values calculated for 
this second dataset should be related to the MF GO 
aspect. 
 
7.2 Evaluating Recall and Precision 
We measured the recall (or true positive rate) and 
precision of GOtoGene and of (Benabderrahmane et 
al. 2010, Frohlich 2007, Wang et al. 2007). Recall (or 
true positive rate) is the fraction of correct genes 
determined by a similarity measure relevant to all genes 
determined by the measure. Precision is the fraction of 
correct genes determined by a similarity measure 
relevant to all genes in the pathway. Let: (1) GP be all 
genes in the pathway and n be the number of these 
genes, and (2) GM  be the top n genes determined by a 
similarity measure, which are semantically related to the 
input gene keywords. recall = (|GM    GP | / |GM |). 
Precision = (|GM   GP| / |GP |). We computed the 
recall and precision for the four methods as follows. We 
first measured the semantic similarity/relationship 
between each term in the GO Graph and the set of terms 
annotating the input gene keywords using each of the 
four methods. We then clustered the genes based on the 
obtained similarity values. GM are the top n genes in each 
cluster with the highest similarity values. As for 
GOtoGene, GM are n genes annotated by the GO terms 
located in the paths from a SRLCA to the terms 
annotating the input gene keywords. 

  Fig. 10 shows the recall and precision results 
obtained with the KEGG pathways. Fig. 11 shows the 
recall and precision results obtained with the pfam 
pathways. For each KEGG and pfam pathway (x-axis), 
the recall and precision values are represented as 
histograms (y-axis). As the figures show, recall and 
precision values vary based on: (1) pathways, and (2) the 
accuracy of each of the four methods to capture the 
semantic similarities and relationships among gene 
annotations within pathways. 

 
Table 1. The15 Pfam Human Pathways and the 15 Pfam Yeast 
Pathways used in the experiments 

Pfam 
Accession 

Pfam ID Number of 
genes (human) 

Number of 
genes (yeast) 

CL0406 vWA-like 11 6 
CL0344 4Fe-4S 7 4 
CL0461 Metallothionein 18 11 
CL0020 TPR 13 6 
CL0418 GIY-YIG 8 19 
CL0417 BIR-like 10 6 
CL0233 SufE_NifU 9 10 
CL0167 Zn_Beta_Ribbon 7 5 
CL0099 ALDH-like 18 11 
CL0042 Flavoprotein 10 7 
CL0040 tRNA_synt_II 12 2 
CL0179 ATP-grasp 7 6 
CL0417 BIR-like 11 9 
CL0445 SNARE-fusion 8 6 
CL0444 YNI 9 5 

Total number of genes 158 113 
 
 
Table 2. The 15 KEGG Human Pathways used in the 
experiments. 

 
 
 
Table 3. The 15 KEGG Yeast Pathways used in the experiments. 

Pathway Name # of 
genes 

hsa00040 Pentose and glucuronate interconversions 34 
hsa00920 Sulfur metabolism 14 
hsa00140 Steroid hormone biosynthesis 26 
hsa00290 Valine, leucine and isoleucine biosynthesis 5 
hsa00563 Glycosylphosphatidylinositol 25 
hsa00670 One carbon pool by folate 19 
hsa00232 Caffeine metabolism 7 
hsa03022 Basal transcription factors 23 
hsa04130 SNARE interactions in vesicular transport 36 
hsa03450 Non-homologous end-joining 13 
hsa03430 Mismatch repair 23 
Hsa00085 Fatty acid biosynthesis 12 
hsa04950 Maturity onset diabetes of the young 25 
hsa04803 Homo sapiens 16 
hsa00120 Primary bile acid biosynthesis 14 

Total number of genes 292 

Pathway Name # of genes 
sce00562 Inositol phosphate metabolism 15 
sce00920 Sulfur metabolism 15 
sce00600 Sphingolipid metabolism 13 
sce00410 beta-Alanine metabolism 12 
sce00514 Saccharomyces cerevisiae 13 
sce00670 One carbon pool by folate 15 
sce00903 Limonene and pinene degradation 20 
sce03022 Basal transcription factors 32 
sce04130 SNARE interactions in vesicular transport 23 
sce03450 Non-homologous end-joining 10 
sce04070 Phosphatidylinositol signaling system 15 
sce04140 Regulation of autophagy 17 
sce04111 Saccharomyces cerevisiae 25 
sce04011 MAPK signaling pathway 57 
sce03010 Ribosome 12 

Total number of genes                                                                              294 
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 In summary, the recall and precision values for 
the two benchmarking datasets showed that GOtoGene 
outperforms the other three methods. The results reveal 
the robustness of the GOtoGene’s method and its ability 
to reflect the semantic relationships among gene 
annotations. 
 
 
     GOtoGene                                             (Frohlich 2007)    
     (Benabderrahmane 2010)                      (Wang 2007) 
 

                                                            

(a) 

 
                                                      (b)       

 
(C) 

 
(d) 

Fig. 10: Recall and precision using KEGG benchmark 

 
                                                            (a)     

 
                                                        (b)           

 
                                                                 (c)   
 

                                                                        

                                                              (d)   
 

Fig. 11: Recall and precision using Pfam benchmark  
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 8    Conclusion 
In this paper, we proposed a system called GOtoGene 
that determines the semantic relationships among genes 
and gene products using the concept of existence 
dependency. Given a set of genes g1, g2, …gn, 
GOtoGene identifies the Semantic Relevant Lowest 
Common Ancestor (SRLCA) of the terms annotating g1, 
g2, …gn in the GO graph. The genes annotated by the 
SRLCA have the closest semantic relationships with g1, 
g2, …gn. We experimentally evaluated the quality of 
GOtoGene and compared it with (Benabderrahmane et 
al. 2010, Frohlich 2007, Wang et al. 2007). Results 
showed that GOtoGene outperforms the other three 
methods. 
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