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Abstract

Feedlots in Australia have long been associated with odour, and as such, in the early

1990’s research was carried out in order to better understand the processes driving the

odour generation. Since that time, many practices have been identified as contributing

to the odour problem, and feedlot management has changed to minimise the odour

emissions. This has resulted in a distinct lack of odour emissions data relating to

‘modern’ feedlots.

Feedlot pad surfaces represent the largest odour emitting source, however, after a rain-

fall event, the odour emissions from the effluent ponds increase to a point where it may

exceed that of the feedlot pad surface. Despite this, there has been little Australian

research carried out to determine and predict the odour emissions from feedlot ponds

after an inflow event.

This project set out to develop a model to predict the odour emission rate from the

effluent ponds at a feedlot after a significant inflow. Odour samples were collected every

few days for a period of time after an inflow at two commercial feedlots in Southern

Queensland and Northern New South Wales, and assessed to determine the odour

emission rate. The collected data displayed a similar pattern of odour emission to that

measured in the early 1990’s, reported by Casey et al (1997). At both feedlots, the

odour emission rate from the primary holding pond rose quickly to a peak (454 and 578

ou/s.m2) within 5 - 8 days, and then declined steadily back to ‘normal’ levels within

25 - 30 days.

A model was developed to reproduce the pattern of odour emissions from the primary

holding pond at each feedlot. The model is a two-stage empirical algorithm, and is



ii

dependent on the inflow ratio, the 24 hour average ambient temperature experienced

during the days of the rainfall event and the number of days since the first day of the

rain event. A parameter named ‘Peak Day’ defines the two stages of the model, and

is read from a table developed from the measured temperature data. It is known that

the pond condition does impact the odour emission rate (Hobbs et al, 1999); however

the current body of research is not conclusive, and not enough pond condition data

was collected during the course of the project to permit this model to include pond

condition parameters as input.

The model was tested with a number of hypothetical scenarios, and was also validated

using the data collected by Casey et al (1997). The model was shown to be reasonably

robust to moderate changes in parameter values, but failed to accurately reproduce

the odour emission patterns measured in the earlier work. This was attributed to the

different management practices of feedlots between the two data sets, and the simplistic

nature of the model developed.

The limited number of odour emissions data sets and supporting data meant that a

comprehensive model could not be developed.



University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof G Baker

Dean

Faculty of Engineering and Surveying



Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Nathan Heinrich

0011205375

Signature

Date



Acknowledgments

I would like to acknowledge the efforts and support of all the staff at FSA Consulting,

especially Dr Peter Watts and Peter Nicholas, who assisted in numerous ways.

I thank the staff from the Intensive Livestock Systems Unit of the Queensland Depart-

ment of Primary Industries and Fisheries for their co-operation and assistance.

Thanks also to my supervisors Dr. Rod Smith and Dr. Peter Watts for their support

and guidance throughout the course of this project.

I would also like to thank my wife Julianne, for all her love and support during the past

year. Thankyou for being there, and putting up with me throughout my University

years.

Nathan Heinrich

University of Southern Queensland

October 2004



Contents

Abstract i

Acknowledgments v

List of Figures xi

List of Tables xvi

Glossary xviii

Chapter 1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Feedlot Hydrology . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 How Australian Feedlots Have Changed . . . . . . . . . . . . . . 3

1.2 Aim of the Research Project . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6



CONTENTS vii

Chapter 2 Previous Research 7

2.1 Odour Sampling - Methods and Equipment . . . . . . . . . . . . . . . . 7

2.1.1 Flux Hood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Wind Tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Olfactometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Types of Olfactometers . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Existing Legislation and Guidelines . . . . . . . . . . . . . . . . . . . . . 12

2.4 Mechanisms of Odour from Anaerobic Effluent Ponds . . . . . . . . . . . 13

2.5 Previous Research into Effluent Pond Odour in Australia . . . . . . . . 13

2.5.1 Piggeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.2 Feedlots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Previous Research into Feedlot Odour Modelling . . . . . . . . . . . . . 17

2.7 Previous Research into Effluent Pond Odour Modelling . . . . . . . . . . 18

Chapter 3 Project Methodology 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Feedlots Involved in the Research . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Odour Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Additional Measurements taken at time of Sampling . . . . . . . . . . . 25

3.5 Odour Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 Sample Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



CONTENTS viii

3.5.2 Olfactometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Methods of Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6.1 Derived Data Collation . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 4 Results 42

4.1 Odour Emission Rate Results . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Feedlot A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.2 Feedlot B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.3 Discussion of Odour Emission Rate Results . . . . . . . . . . . . 48

4.2 Other Measured Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Pond Surface Temperature . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Discussion – Pond Surface Temperature Results . . . . . . . . . . 51

4.2.3 Effluent Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.4 Discussion – Effluent Analysis Results . . . . . . . . . . . . . . . 54

Chapter 5 Model Development 56

5.1 Initial Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.1 Key Parameters Influencing Odour Emissions . . . . . . . . . . . 56

5.1.2 Practical Limitations to Model Development . . . . . . . . . . . 58

5.1.3 Data Sources for the Model . . . . . . . . . . . . . . . . . . . . . 59

5.2 Model Development and Structure . . . . . . . . . . . . . . . . . . . . . 61



CONTENTS ix

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.2 Initial Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.3 Model Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.4 Inclusion of Measured Parameters . . . . . . . . . . . . . . . . . 63

5.2.5 Final Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 6 Model Analysis 66

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Model Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.1 Feedlot A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.2 Feedlot B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.3 Discussion – Model Accuracy . . . . . . . . . . . . . . . . . . . . 71

6.3 Hypothetic Testing of the Model . . . . . . . . . . . . . . . . . . . . . . 73

6.3.1 Discussion – Model Robustness and Limits . . . . . . . . . . . . 75

6.4 Model Validation Using Previous Research Data . . . . . . . . . . . . . 76

6.4.1 Discussion – Validity of the Model . . . . . . . . . . . . . . . . . 77

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Chapter 7 Conclusions and Further Research 82

7.1 Success of the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Further Research into this Area . . . . . . . . . . . . . . . . . . . . . . . 84



CONTENTS x

Bibliography 85

References 87

Appendix A Project Specification 90

Appendix B Odour Emissions Data Analysis Spreadsheets 93

Appendix C Effluent Analyses from Primary Holding Ponds - Post In-

flow 101

Appendix D Effluent Analyses – Comparison of Current and MRC Project

Data 109



List of Figures

1.1 ‘Old’ Style Feedlot after Rainfall . . . . . . . . . . . . . . . . . . . . . . 4

1.2 ‘New’ Style Feedlot after Rainfall . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Flux Hood in use on an effluent pond

(taken from http://www.odour.unsw.edu.au/flux-hood-sampling.html) . 8

2.2 Schematic of the UNSW Wind Tunnel

(taken from http://www.odour.unsw.edu.au/odour-sampling.html) . . . 9

2.3 Feedlot 1 – Odour Emission and Rainfall . . . . . . . . . . . . . . . . . . 15

2.4 Feedlot 2 – Odour Emission and Rainfall . . . . . . . . . . . . . . . . . . 16

2.5 Feedlot 3 – Odour Emission and Rainfall . . . . . . . . . . . . . . . . . . 16

2.6 Feedlot 2 – Odour Emission, Electrical Conductivity and pH . . . . . . 17

3.1 Launching the Wind Tunnel onto the Pond Surface . . . . . . . . . . . . 23

3.2 Wind Tunnel in Lifted Position . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Wind Tunnel, Ready to be lowered into Sampling Position . . . . . . . . 24

3.4 Wind Tunnel in Sampling Position . . . . . . . . . . . . . . . . . . . . . 24



LIST OF FIGURES xii

3.5 Odorous Air Sample Collection Drums . . . . . . . . . . . . . . . . . . . 25

3.6 Pond Effluent Temperature Sensor / Logger . . . . . . . . . . . . . . . . 26

3.7 Pond Effluent Temperature Sensor / Logger In Position . . . . . . . . . 27

3.8 Variation in Odour Concentration with Elapsed Time to Analysis . . . . 28

3.9 Feedlot A – AutoCad-manipulated Aerial Photograph . . . . . . . . . . 32

3.10 Feedlot A - Primary Holding Pond Primary to Inflow . . . . . . . . . . . 35

3.11 Feedlot A - Main Sedimentation Basin Prior to Inflow . . . . . . . . . . 35

3.12 Feedlot B – AutoCad Design Drawing . . . . . . . . . . . . . . . . . . . 36

3.13 Feedlot B - Primary Holding Pond Prior to Inflow . . . . . . . . . . . . 39

3.14 Feedlot B - North-East Sedimentation Basin Prior to Inflow . . . . . . . 40

3.15 Feedlot B - South-East Sedimentation Basin Prior to Inflow . . . . . . . 41

4.1 Feedlot A - Odour Emission Rates from All Effluent Ponds . . . . . . . 43

4.2 Feedlot B - Odour Emission Rates from All Effluent Ponds . . . . . . . 45

4.3 Feedlot B - Baseline Odour Emission Rates from All Effluent Ponds . . 47

4.4 Feedlot A - Variation of Pond Surface Temperature At Times of Sampling 49

4.5 Feedlot B - Variation of Pond Surface Temperature At Times of Sampling 49

4.6 Feedlot A - Comparison of Pond Surface and Ambient Temperature . . 50

4.7 Feedlot B Effluent Analysis - Volatile Solids Variation Over Sampling

Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



LIST OF FIGURES xiii

4.8 Feedlot B Effluent Analysis - Total Kjedahl Nitrogen Variation Over

Sampling Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 Feedlot B Effluent Analysis - Electronic Conductivity Variation Over

Sampling Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.10 Feedlot B Effluent Analysis - pH Variation Over Sampling Period . . . . 53

5.1 Comparison of Odour Emission Rate Patterns from the Primary Holding

Pond at Both Feedlots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1 Feedlot A, Primary Holding Pond – Measured vs Modelled Odour Emis-

sion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Feedlot B, Primary Holding Pond – Measured vs Modelled Odour Emis-

sion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Effect of Modifying the Peak Day Whilst Holding the Inflow Ratio Con-

stant at 5:1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 Effect of Modifying the Inflow Ratio Whilst Holding the Peak Day Con-

stant at (Day) 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5 Effect of Modifying the Inflow Ratio Whilst Holding the Peak Day Con-

stant at (Day) 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.6 Feedlot 1, MRC Project – Measured vs Modelled Odour Emission Rate 77

6.7 Feedlot 2, MRC Project – Measured vs Modelled Odour Emission Rate 78

6.8 Feedlot 3 (Pond 1), MRC Project – Measured vs Modelled Odour Emis-

sion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.9 Feedlot 3 (Pond 2), MRC Project – Measured vs Modelled Odour Emis-

sion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



LIST OF FIGURES xiv

6.10 Comparison of Odour Emission Rate Patterns - Feedlots A and B, and

1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.11 Comparison of Odour Emission Rate Patterns - Feedlots A and B, and

3 (Pond 1) and 3 (Pond 2) . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.1 Feedlot A – Odour Emission Rate Data Analysis Spreadsheet (Page 1) . 94

B.2 Feedlot A – Odour Emission Rate Data Analysis Spreadsheet (Page 2) . 95

B.3 Feedlot B – Odour Emission Rate Data Analysis Spreadsheet (Page 1) . 96

B.4 Feedlot B – Odour Emission Rate Data Analysis Spreadsheet (Page 2) . 97

B.5 Feedlot A – Model Analysis Spreadsheet . . . . . . . . . . . . . . . . . . 98

B.6 Feedlot B – Model Analysis Spreadsheet . . . . . . . . . . . . . . . . . . 99

B.7 MRC Project Odour Emission Rate Data . . . . . . . . . . . . . . . . . 100

C.1 Feedlot A – Effluent Analysis(2 pages) . . . . . . . . . . . . . . . . . . . 102

C.2 Feedlot B – Effluent Analysis (5 pages) . . . . . . . . . . . . . . . . . . . 104

D.1 Comparison between Current Project and MRC Project – pH . . . . . . 110

D.2 Comparison between Current Project and MRC Project – EC . . . . . . 111

D.3 Comparison between Current Project and MRC Project – Ammonia Ni-

trogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

D.4 Comparison between Current Project and MRC Project – Total Phos-

phorous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

D.5 Comparison between Current Project and MRC Project – Volatile Solids 112



LIST OF FIGURES xv

D.6 Comparison between Current Project and MRC Project – Suspended

Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

D.7 Comparison between Current Project and MRC Project – Total Kjedahl

Nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

D.8 Current Project and MRC Project – Effluent Data . . . . . . . . . . . . 114



List of Tables

3.1 Feedlot A – Program of Odour Sampling . . . . . . . . . . . . . . . . . . 21

3.2 Feedlot B – Program of Odour Sampling . . . . . . . . . . . . . . . . . . 22

3.3 Feedlot A - Final MEDLI Parameters for Inflow Estimation . . . . . . . 33

3.4 Feedlot A - MEDLI Values of Effluent Inflow from Rainfall . . . . . . . 34

3.5 Feedlot A - Sensitivity Analysis of MEDLI Parameters . . . . . . . . . . 34

3.6 Feedlot B - Final MEDLI Parameters for Inflow Estimation . . . . . . . 38

3.7 Feedlot B - MEDLI Values of Effluent Inflow from Rainfall . . . . . . . 38

4.1 Feedlot A - Odour Sampling Results (All Ponds) . . . . . . . . . . . . . 43

4.2 Feedlot B - Odour Sampling Results (All Ponds) . . . . . . . . . . . . . 45

5.1 Lookup Table for Peak Day Determination . . . . . . . . . . . . . . . . 65

6.1 Feedlot A – Input Values for Pond Odour Model . . . . . . . . . . . . . 68

6.2 Feedlot A, Primary Holding Pond – Measured vs Modelled Odour Emis-

sion Rate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Feedlot B – Input Values for Pond Odour Model . . . . . . . . . . . . . 69



LIST OF TABLES xvii

6.4 Feedlot B, Primary Holding Pond – Measured vs Modelled Odour Emis-

sion Rate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5 Error Analysis - Both Feedlots . . . . . . . . . . . . . . . . . . . . . . . 72

6.6 MRC Input Data used in Validation of the Odour Emissions Model . . 77



Glossary

Anaerobic Pond Effluent treatment ponds that degrade organic

matter through anaerobic bacterial agents
Days Since Rain Number of days since the start of the rain event

in question
DPI & F The Department of Primary Industries and

Fisheries, Queensland
Feedlot A One of the participating commercial feedlots in

the project
Feedlot B The other participating commercial feedlot in

the project
FSA Consulting Engaged by MLA to undertake research project

into feedlot odour emissions, employer of the au-

thor
Inflow Ratio The ratio of effluent inflow volume to initial

pond volume
MEDLI An effluent reuse model developed by the

Queensland DPI & F
MLA Meat and Livestock Australia, industry body

funding the odour project undertaken by FSA

Consulting
Odour Concentration The measure of odour intensity, measured in

Odour units (ou)

Odour Emission Rate (OER) The rate of emission of odour from a surface,

measured as odour units emitted per second

square metre (ou/s.m2)



Glossary xix

Odour Sampling The process of taking odorous air samples from

a surface
Olfactometry The assessment and quantification of odour con-

centration and emission rate
Peak Day A parameter dependent on ambient temperature

to define the day on which peak odour emission

rate occurs
Primary Holding Pond The pond which receives effluent from the sedi-

mentation basin for initial treatment
Secondary Holding Pond The treatment pond which receives effluent from

the primary holding pond for final treatment be-

fore irrigation or re-use
Sedimentation Basin A shallow pond that detains flowing effluent for

a period of time to allow solids to settle out



Chapter 1

Introduction

This research project was part of a larger research project carried out by FSA Con-

sulting. Meat and Livestock Australia commissioned FSA Consulting to undertake a

research effort into feedlot odour, with the aim of developing industry-specific odour

performance criteria for the development and assessment of feedlots across New South

Wales and Queensland. Two commercial feedlots, one in southern Queensland and the

other in the northern New South Wales, were involved as part of the research.

The feedlot pad surface is the major source of odour emissions in a feedlot. The larger

project focussed on this, and a model to predict the odour emissions was developed.

In addition, the feedlot effluent ponds can be a major source of odour from a feedlot,

especially after rainfall when an inflow to the pond occurs.

The task of developing a model to predict the odour emissions from the effluent ponds

after an inflow formed the basis of this research project, the results of which were

included as part of the research project for Meat and Livestock Australia.

1.1 Background

Feedlots are a large source of odour, and as such some research has been carried out

in the past in order to better understand and quantify the odour generation. However,
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the majority of this research was undertaken in the early 1990’s and since that time,

feedlot management practices have changed significantly, particularly in regard to odour

management. In addition, the recent changes in technology, standards and regulatory

guidelines presented a need to obtain more modern and reliable data.

1.1.1 Feedlot Hydrology

Feedlots in a catchment provide a source of nutrient contamination for any surface

runoff. Hence, feedlots are required to capture any contaminated runoff, and divert

clean runoff from entering the feedlot catchment area. The captured runoff is stored in

effluent ponds for treatment and subsequent irrigation or re-use within the feedlot. A

quick background of feedlot hydrology is provided.

After rainfall, once the moisture storage capacity of the feedlot surface, also known as

the pad, has been met, then runoff will occur.

Modern feedlots maintain a shallow depth of manure on the feedlot pad. This means

that rain events of as little as 10 - 15 mm may produce runoff.

Runoff containing dissolved manure is effluent, and is transported through the feedlots’

drainage network and eventually terminates into the effluent treatment ponds. Effluent

flowing from the drainage network is contained temporarily in a sedimentation basin.

This is a large, shallow pond where solids have an opportunity to settle out of the

effluent. Having such a basin reduces the amount of solid material making its way into

the anaerobic effluent holding ponds. This consequently reduces the organic load on

the holding ponds, making them more effective.

As the basin fills, the settled effluent passes through a small weir to the holding ponds,

where it remains. The weir detains the effluent in the sedimentation basin for a time

to settle out.

The effluent is treated anaerobically by bacteria in the holding ponds, which breakdown

the organic matter and stabilise the nutrient load. After treatment, the effluent can

then be utilised for irrigation of crops, or reused within the feedlot (watering of roads



1.2 Aim of the Research Project 3

or wetting of compost, etc).

Stable, properly functioning effluent ponds do not produce a lot of odour. After a period

of no inflow, the effluent holding ponds reach a state of bacterial equilibrium, and this

is the point where the odour produced is minimal. The ponds take on a distinct pinkish

colour, due to the bacteria present. However, after a rainfall event, a large amount of

fresh effluent is introduced to the holding ponds, and this upsets the bacterial balance.

The upsetting of the bacterial balance increases the odour generation from the ponds.

1.1.2 How Australian Feedlots Have Changed

Australian feedlots have changed their management practices significantly in light of

research into odour emissions carried out in the early 1990’s. High stocking densities,

infrequent pen manure removal and pen maintenance and poor pen drainage were but a

few practices that had a substantial impact on the odour emissions. The greater depths

of manure (over 300 mm deep) on the pen surface led to higher organic and nutrient

loads in the pen runoff, increasing the load on the feedlot effluent treatment system.

The difference in management of feedlots is best represented by the photographs in

Figures 1.1 and 1.2, taken after rainfall. It can be seen that the ‘old’ style feedlot has a

lot of manure on the surface, and is poorly drained. The ‘modern’ feedlot has a small

depth of manure, and is very well drained. The modern feedlot pad would therefore dry

out much faster, and as the odour emissions are closely related to the moisture content

of the manure, would produce less odour.

Modern feedlots have worked to remedy these practices that increase the odour gener-

ation, and as such any previous research into feedlot odour is less robust and reliable.

This presented the need for further modern research.

1.2 Aim of the Research Project

The broad aim of this project was to develop and improve the knowledge of, and the

factors influencing, the odour production from feedlot effluent ponds after a significant
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Figure 1.1: ‘Old’ Style Feedlot after Rainfall

Figure 1.2: ‘New’ Style Feedlot after Rainfall
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inflow. This culminated in the development of a predictive model to predict odour

emissions under these conditions. This research was to be used by FSA Consulting

in the formulation of guidelines to assess the environmental performance of new and

existing feedlots.

1.2.1 Specific Objectives

The specific objectives of this research include:

Research the background information available relating to feedlot odour

emissions in Australia (concentrating on, but not restricted to, feedlot ef-

fluent ponds), odour measurement and olfactometry and feedlot odour emis-

sions models.

This was required to identify any previous research and background the

topic. Knowledge of the odour production processes, odorous air sampling

and analysis was required to fully understand the capability of, and limita-

tions of odour measurement and analysis (olfactometry). The background-

ing and identification of previous research began with specific feedlot efflu-

ent pond odour research; however research into the methods of sampling

and olfactometry was also required. Relevant research was not only limited

to feedlots; parallels were drawn from the extensive research into piggery

effluent pond odour.

Assist in the collection of odour samples from two commercial feedlots, and

collect data as appropriate.

This was the practical part of the research, and provided the necessary data

for analysis. The complex nature and prohibitive cost of the data collection

does not allow personal involvement in the formulation and implementation

of independent odour collection and analysis. Hence, involvement in the

administration of, collection and analysis of odour samples was limited to

assistance only. However my limited involvement was not detrimental to
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the success of the research. As the data was collected professionally, we

could safely assume a higher level of accuracy. Full involvement in this area

of the project was also beyond the scope of the research and the subsequent

timeline. The analysis of the data was where the majority of this projects’

work was done.

Analyse field data and assess the major factors influencing the odour emis-

sion rate.

The analysis of the field data was necessary to determine any possible re-

lationships between influencing factors and the measured odour emission

rates from the effluent ponds. This discovery was essential for the model

development.

Develop a model to predict the odour emission rate from the primary efflu-

ent pond after inflow.

This was the supreme objective of the research. The model needed to be

developed, analysed and tested to relate the odour emissions from the efflu-

ent ponds to a number of easily measured parameters. The modelling was

to be used in the formulation of feedlot assessment guidelines.

1.3 Dissertation Structure

This dissertation begins with a short introduction to the topic, with some essential

background to feedlot hydrology. The aims of the research are detailed (Chapter 1),

and an overview of the previous research into this area is provided (Chapter 2). The

methodology behind the odour sampling and assessment and data collection is given

in Chapter 3, the results are discussed in Chapter 4 and the development of the model

is detailed in Chapter 5. The model is analysed and tested in Chapter 6, and the

dissertation is concluded in Chapter 7. Appendices of supporting information and data

are also included.



Chapter 2

Previous Research

2.1 Odour Sampling - Methods and Equipment

There are a number of methods of odour sampling that have been used in the past,

each with particular advantages that suit different situations.

Feedlots have large areas of possible odour emissions, because of the pens and effluent

ponds, and this presents a difficulty in sampling. Odour emissions from areal sources

varies both spatially and temporally (Smith and Watts, 1994a). In fact, there is no

direct way of measuring or sampling the odour emissions from extensive sources, and

as such estimations need to be made through point measurements (using a wind tunnel

or flux hood sampling system) or by taking downwind measurements and using back-

calculation to estimate the emission rate (Smith and Kelly, 1995). In this project,

as differentiation between various sources within the feedlot was required, the point

source method was used to estimate the average emission rate across the effluent ponds.

Methods of measurement include the flux hood and wind tunnel sampling systems. A

description of these methods follows.

2.1.1 Flux Hood

The flux hood, shown in Figure 2.1 in use on an effluent pond, is an isolated chamber
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Figure 2.1: Flux Hood in use on an effluent pond
(taken from http://www.odour.unsw.edu.au/flux-hood-sampling.html)

placed over a representative site of the area being sampled. A controlled flow of odour

free air (or nitrogen) is released into the chamber and allowed to mix with any emitted

odours from the sample surface. This air is then released through the vents of the

chamber. A sample is taken of this air as it is released from the chamber. The odour

free air introduced into the chamber is known as the ‘sweep gas’, and is introduced at

flow rates of between 2 and 10 litres per minute. Samples are taken at rates less than

three-quarters of the sweep gas flow rate, to prevent ambient air being drawn into the

chamber (UNSW, 2004).

The flux hood, in comparison to the wind tunnel, is slower to obtain a sample, and was

not chosen for use in the sampling taken out in this project.

2.1.2 Wind Tunnel

A wind tunnel is somewhat similar to a flux hood in concept; however it does have

some significant differences. Like the flux hood, the wind tunnel is a sealed enclosure

over a site representative of the entire area being sampled. However, the wind tunnel

involves much larger airflows through the chamber. A schematic of the University of

New South Wales wind tunnel is shown in Figure 2.2.

The wind tunnel is placed over the site (solid or liquid surface). The float tubes are

obviously required for use on effluent ponds. When the tunnel is used on a solid
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Figure 2.2: Schematic of the UNSW Wind Tunnel
(taken from http://www.odour.unsw.edu.au/odour-sampling.html)

surface, a proper airtight seal can be created by packing around the bottom edges of

the chamber with moist sand. On liquid surfaces, an airtight seal can be achieved by

slightly submerging the bottom edges. Odour-free air is pumped through the chamber

via the inlet duct, and mixes with the odours emitted from the sampling surface, and

exits via the exhaust duct. As the odorous air exits the wind tunnel, a sample is taken.

The odour emission rate can then be determined knowing the surface area sampled

and the wind velocity through the wind tunnel. Smith and Watts (1994a) recommend

that the wind velocity be set with regard to the final use of the measurements. For

instance, if the sampling is aiming to replicate the ambient conditions, then the wind

speed needs to match the ambient wind speed for the particular site. If the sampling is

for comparative purposes, then a selected wind speed should be used and maintained

for all samples (i.e. 1 m/s).

The wind tunnel was used for sampling in this project. The wind tunnel has now all

but superseded the flux hood for point source odour sampling, and is considered the

best method of sampling areal odour emitting sources (UNSW, 2004; Smith and Watts,

1994).



2.2 Olfactometry 10

2.2 Olfactometry

Olfactometry is, in essence, the use of the human nose to determine and quantify

odours. The human nose has been, and still is, the only satisfactory method of odour

measurement, even though recent efforts have been made into developing an electronic

nose for odour measurement.

2.2.1 Types of Olfactometers

In the past, there have been many different types of olfactometers used. They are

described here briefly as a background.

Scentometer

The scentometer is a handheld, portable olfactometer that is used in the field. It consists

of a small box with nostril sniffing ports at one end, with a series of orifices along the

bottom. There are two ports that filter ambient air (through a carbon filter), and

the rest allow odorous ambient air to enter. The operator closes all ports, and places

their nostrils over the sniffing ports. Once the filtered ports are opened, the ports

introducing odorous air are opened in turn (smallest to largest), gradually lowering the

dilution of the odorous air, until the operator can just detect an odour. The port where

the odour is detected is recorded, and used to determine the odour concentration. This

method is used by some regulatory authorities in the USA; however operator fatigue is

a considerable limitation (Watts, 1999)

Static Olfactometer

A static olfactometer presents odorous air in a sealed container to a panellist. The oldest

form of dilution is the syringe dilution method. A sample of odorous air is drawn into

the syringe, and made up to volume with odour-free air. The mixture is then expelled

into a panellist’s nose for measurement. This method differs from the dynamic method

of olfactometry as there is no flowing air. The odour can also be introduced to the

panellist through odorous cotton swatches. The swatches are exposed to the odour,
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and the odorous particles adsorb onto the cotton. The swatches are then presented to

the panellist for analysis.

Butanol Olfactometer

Here the ambient, or odorous air is quantified through comparison with a reference

odour, butanol. One example of a butanol olfactometer is the Tecnodor� (Enviro-

Access 2004). This is a portable unit, and it is used on-site. A panellist is allowed to

breathe ultra-pure air for one minute, to calibrate their nostrils and prevent habituation

to the ambient and reference odours. After this has occurred, the panellist sniffs the

reference odour (butanol) and compares the ambient air (odorous) to this odour. The

relative intensities are entered into the olfactometry unit via a tactile screen. This is

repeated for a range of butanol dilutions, and the ambient odour intensity is given in

terms of 1-butanol concentrations.

Dynamic Olfactometry

There are two basic types of dynamic olfactometry; yes / no and forced choice.

Yes / No olfactometry uses one sniffing port for each panellist, and the panellist is

asked whether an odour exists in the diluted odorous air presented (yes or no). As the

dilutions are continually changed, the level of odour concentration can be determined.

Usually, each successive dilution is chosen at random to maintain accuracy.

Forced choice dynamic olfactometry places panellists with three sniffing ports. Clean,

odour free air is presented in two of the ports, with diluted odorous air in the third. The

panellists are asked to choose which port contains the odorous air, and give a measure

of certainty of their answer (certainty, inkling or guess). The port from which the

odorous air is presented is completely random. The title ‘Forced-choice olfactometry’

if given as the panellists are forced to make a choice. It is called dynamic olfactometry

as the odour dilution can be constantly varied through a series of pipes and flowmeters.

The type of olfactometer used in this project is a forced-choice, dynamic olfactometer,

owned and operated by the Department of Primary Industries and Fisheries, Queens-

land. It has been constructed to conform to the Australian / New Zealand Standard
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- Stationary Source Emissions - Determination of odour concentration by dynamic ol-

factometry (AS/NZS 4323.3) (QDPI & F, 2004).

2.3 Existing Legislation and Guidelines

The overall purpose of the project being carried out by FSA Consulting, sponsored by

Meat and Livestock Australia, is to develop odour impact criteria for use in assessing

the performance of new and existing feedlots. Existing odour legislation can be generic

and conservative, and industry specific criteria are required for feedlotters.

The existing legislation, taken from the Environmental Protection Act 1994, states that

persons “must not carry out any activity that causes, or is likely to cause, environmental

harm unless the person takes all reasonable and practicable measures to prevent or

minimise the harm (the general environmental duty)”.

The Department of Primary Industries and Fisheries has been delegated the responsi-

bility of administration of cattle feedlotting. This includes assessing new and expanding

developments, issuing environmental authorities, monitoring operational performance

and investigating complaints (QDPI, 2000).

Guidelines for the establishment and operation of Queensland cattle feedlots are avail-

able (QDPI, 2000), and they complement the National Guidelines for Beef Cattle Feed-

lots in Australia (ARMCANZ, 1997). These guidelines are not mandatory for feedlot-

ters in Australia; however they are based on industry best practice, and as such will

provide outcomes that are acceptable to regulatory authorities.

In particular reference to odour from effluent ponds, the guidelines state that the ponds

should be designed such that odour emissions after an inflow should stabilise relatively

quickly. The recommendations for achieving this are to maintain at all times a level of

effluent in the pond to allow the bacterial population to survive, ready to commence

breakdown of the next inflow; and to maintain regular irrigation with the effluent

to limit evaporation losses and therefore the salinity of the effluent (to ensure the

survival of the bacteria). However the guidelines do not go into any detail with regard
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to satisfactoriness of pond odour emission rates, or acceptable post-inflow, return-to-

normal (odour emission rate) timelines.

2.4 Mechanisms of Odour from Anaerobic Effluent Ponds

The mechanisms of odour generation from feedlot effluent ponds is not fully under-

stood, but research has been undertaken into this area. Hobbs et al (1999) stated that

while the bio-decay of organic compounds is performed by a multitude of microbial

populations, and the actual mechanisms may not be well understood, the behaviour of

these bacterial populations can be ascertained through the changes in concentration of

the substrate (energy source) and their by-products.

Research undertaken by Hobbs et al (1997, 1999) suggested that the majority of the

odour from anaerobic ponds is due to volatile fatty acids present in the effluent. Volatile

fatty acids are created when volatile solids are digested, and the volatile fatty acids are

converted to a gas, and escape to the atmosphere. The degradation of the volatile fatty

acids that produce methane gas is known as methanogenesis. Under the high loading

rates sometimes encountered in piggery ponds, methanogenesis can be inhibited by high

concentrations of hydrogen sulphide, ammonia or volatile fatty acids, which increases

the likelihood of odour emissions.

2.5 Previous Research into Effluent Pond Odour in Australia

The amount of research into feedlot effluent pond odour in Australia is limited, however

there has been some research undertaken with respect to effluent ponds in piggeries,

from which some parallels can be drawn. However it was reported in Huegle et al (2001)

that odour from cattle effluent was consistently less than that from piggery effluent,

and this is duly noted.
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2.5.1 Piggeries

The work undertaken by Galvin et al (2002) studied the effect of the volatile solids

loading rate and season on odour emissions from piggery effluent ponds in South East

Queensland. Six similar piggery ponds were chosen and odour samples were taken from

each during winter and summer using a wind tunnel. A grid of sampling points was

set up over the pond to gain an average value for the odour emissions.

Odour emissions were found to increase from summer to winter, and a strong relation-

ship between volatile solids loading rate and odour emissions was observed. Anecdotal

evidence of higher rates of odour emissions from more heavily loaded ponds was sup-

ported by their results.

The differences in odour emissions for each loading rate of volatile solids were found

to be the same for both seasons. It was concluded that the difference in temperature

caused the difference in odour emissions between the two seasons; however, as the

ponds were part of commercial piggery operations, the active volume of the effluent

pond would have reduced between sampling seasons as more solid material built up in

the ponds. This may have affected the treatment efficiency of the ponds themselves

(less liquid volume in which to accommodate the bacterial population).

2.5.2 Feedlots

The only direct Australian research into feedlot effluent pond odour emissions was

carried out in 1993 / 1994, reporting the odour emission rates over time after an inflow

at three feedlots on the Darling Downs (Casey et al, 1997). However the scope of the

research did not extend to development of a predictive model.

The inflow occurred after an extended period of zero runoff, and hence inflow into the

pond. After rainfalls of 70 mm at two of the feedlots, and 47 mm at the other, inflow

into the pond occurred, and odour measurements were taken in the period following.

The patterns of odour emissions and the corresponding rainfall from the three feedlots

under examination can be seen in Figures 2.3 to 2.5. The relationship between odour
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Figure 2.3: Feedlot 1 – Odour Emission and Rainfall

emissions, pH and electrical conductivity from the pond at Feedlot B is shown in

Figure 2.6.

Casey et al (1997) found that the odour emission rate rose to a peak 6-8 days after the

inflow, and then slowly declined to pre-inflow (‘normal’) levels at all feedlots. The peak

odour emission rates were 124, 488 and 524 standard odour unit m/s, a range of 12 to

67 times the normal odour emission rates of the ponds. Up to 40 days elapsed before

the odour emission rate returned to near baseline levels. It was also found that the peak

odour emission rate was related to the ratio of initial pond volume to inflow volume,

which alters the dilution ratio. In all cases, the feedlots had irrigated the majority of

the effluent, after an extended dry period, leaving only a small depth of effluent in the

ponds. This worked to increase the inflow to existing pond effluent ratio, lowering the

dilution effect on the inflowing effluent.

The pond chemical analysis shown in Figure 2.6 shows a dramatic drop in pH soon

after the inflow event, with a similar drop in electrical conductivity (indicating the salt

levels in the pond). It was posed that the sudden slug loading of the pond unbalanced

the anaerobic digestion process, and the fact that the existing bacterial population was
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Figure 2.4: Feedlot 2 – Odour Emission and Rainfall

Figure 2.5: Feedlot 3 – Odour Emission and Rainfall
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Figure 2.6: Feedlot 2 – Odour Emission, Electrical Conductivity and pH

unable to cope with the large amount of degradable organic matter introduced, led to

this sudden lowering of the pH. It was also noted that the salt levels were very high

prior to the inflow event, and this may have inhibited bacterial activity somewhat,

leading to the increased levels of odour emissions soon after the inflow (as there were

only a small population of bacteria available to begin the breakdown).

2.6 Previous Research into Feedlot Odour Modelling

Some research into feedlot odour modelling has been carried out in Australia, however

it has mostly focussed on the feedlot pad. Lunney and Smith (1995) developed an

odour emissions model for feedlot pads based on odour sampling carried out during the

early 1990’s. The model takes as input the stocking rate of the feedlot pens, moisture

content of the pad surface, pad temperature, wind speed and days since rain factor (as

the model can handle the increase in pad surface odour emissions after rainfall). The

model performed reasonably well, with a correlation of 0.64 between the measured and

modelled odour emission rates, for over 700 measurements.
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2.7 Previous Research into Effluent Pond Odour Modelling

The amount of research into the modelling of odour production from anaerobic ponds

is quite limited, or non-existent in Australia. Specific research into modelling of odours

from anaerobic ponds has been carried out overseas; however this is also quite limited.

Picot et al (2003) conducted research into the emission of hydrogen sulphide from

anaerobic ponds. The experiments were conducted on full scale anaerobic ponds used

for the initial treatment of urban wastewater in the south of France. A model was

developed to predict the hydrogen sulphide emissions from the water characteristics of

temperature, pH and sulphides concentration, however the full document, detailing the

model, could not be accessed.

Some research has also been undertaken by the National Centre for Engineering in

Agriculture (NCEA) with regard to piggery pond odour, and the effects of loading rate

on odour emissions (2002). This research aimed to develop a model to describe the

relationship between pond condition and odour emission rate.



Chapter 3

Project Methodology

3.1 Introduction

As the practical work of this project was been carried out under the guidance of, and

as part of a greater research project undertaken by FSA Consulting, the methodology

of odour sampling and measurement had been formulated in the best interest of the

greater research project. Personal involvement in the formulation and modification of

the methods used was limited; however assistance was given in the collection of odour

samples and other data. A detailed description of the methods of odour sampling and

assessment follows.

The experience and expertise of the Queensland Department of Primary Industries and

Fisheries (DPI & F) odour sampling and olfactometry department (part of the Intensive

Livestock Systems Unit) was called upon to undertake the field work involved. The De-

partment has many years of experience in the collection of odour samples from feedlot

sites, and have the necessary equipment and technology required. Standards appropri-

ate to odour measurement are followed where possible, and industry best practice is

followed where no relevant standards exist.

The odour project undertaken by FSA Consulting, titled “Development of Odour Per-

formance Criteria for the Australian Feedlot Industry” was sponsored by Meat and
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Livestock Australia. There were two co-operating feedlots involved with this study, as

described below.

3.2 Feedlots Involved in the Research

Feedlot A

Feedlot A is an 18,000 head feedlot located in southern Queensland. This feedlot is

located on the Darling Downs at a latitude 27°13’ S and 151°43’ E, about 16 kilome-

tres north east of Dalby at an elevation of 350 metres AHD. The annual rainfall and

evaporation at Dalby are 670 mm and 2007 mm respectively. The site experiences a

cool to cold winter and warm to hot and humid summers (Nicholas et al, 2004).

Feedlot B

Feedlot B currently is a 24,000 head beef cattle feedlot. The feedlot is located on the

New England Tablelands, in northern New South Wales at a latitude 29°30’ S and

longitude 151°45’ E. The feedlot is about 28 kilometres north of Glen Innes. It is

located near the confluence of the Severn River and Beardy Waters at an elevation of

about 900 metres AHD.

The annual rainfall and evaporation at the site are 771 mm and 1650 mm respectively.

The evaporation rate is significantly greater than that at Glen Innes (1355 mm) as the

property is on the western fall of the Great Dividing Range. The site experiences a

cool to cold winter and relatively mild summers (Nicholas et al, 2004).

3.3 Odour Sampling

The focus of this odour sampling was to collect odour data which would give an indi-

cation of how the effluent ponds at a feedlot respond to a large inflow of fresh effluent,

for a period of time after the inflow. Therefore, staff at the DPI & F and at FSA Con-

sulting (author included) had to be ready to begin odour sampling as soon as possible
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Table 3.1: Feedlot A – Program of Odour Sampling
Date Rainfall (mm) Odour Sampling Days Since Rain

3 December 2003 0.2
4 December 2003 2.6
5 December 2003 73.6
6 December 2003 37.2
7 December 2003 11.2
8 December 2003 – 1st Sample 3

10 December 2003 – 2nd Sample 5
12 December 2003 – 3rd Sample 7
13 December 2003 3.2
15 December 2003 – 4th Sample 10
16 December 2003 0.8
17 December 2003 – 5th Sample 12
19 December 2003 – 6th Sample 14
22 December 2003 – 7th Sample 17
23 December 2003 1

8 January 2004 9.2 8th Sample 34

after an inflow.

A rainfall event occurred from the 4th to the 7th of December, 2003 at Feedlot A. A

total of 124.8 mm of rain fell during this period. A rainfall event of 107.4 mm fell at

Feedlot B during the period from the 1st to the 3rd of October 2003. These rainfall

events were considered great enough to cause a significant inflow to the ponds, and as

such an effluent pond sampling program was drawn up to follow these inflows. The

sampling program at both feedlots began within one day of the end of the rain event.

The programs of odour sampling at both feedlots can be seen in Tables 3.1 and 3.2.

A wind tunnel was employed to take the odour samples from the surface of the effluent

ponds and sedimentation basins. The following figures show the equipment in use on

the surface of the secondary holding pond at Feedlot A. Figure 3.1 shows the equipment

being floated out on the effluent surface after the ambient air and sample air lines had

been connected. The wind tunnel was then lowered onto the surface by way of a

remote and electric motor and cable setup (Figures 3.2 and 3.3), and an airtight seal

was created between the tunnel and the liquid surface ready for sampling to begin

(Figure 3.4). (When the wind tunnel is used on a hard surface, such as a feedlot pad

surface, an airtight seal cannot be created. In such cases, moist sand is used to around

the edge of the exposed surface to prevent air escaping out the base of the tunnel. This
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Table 3.2: Feedlot B – Program of Odour Sampling
Date Rainfall (mm) Odour Sampling Days Since Rain

1 October 2003 95.0
2 October 2003 10.2
3 October 2003 2.2 1st Sample 2
5 October 2003 3
6 October 2003 11.4
7 October 2003 – 2nd Sample 6
9 October 2003 – 8

12 October 2003 – 3rd Sample 11
14 October 2003 – 4th Sample 13
16 October 2003 – 5th Sample 15
17 October 2003 – 6th Sample
19 October 2003 15.4
23 October 2003 0.2 22
24 October 2003 – 7th Sample
28 October 2003 1
30 October 2003 9.2 8th Sample 29

is obviously not required in pond odour sampling.)

The wind tunnel was supplied with filtered ambient air (filtered through a charcoal

filter) through the flexible ducting as shown in Figures 3.1 to 3.4. The air then entered

the wind tunnel (at a target throat wind speed of 4 m/s) and passed over the exposed

liquid surface. As it did so, it picked up odours emitted from the surface, and this

odorous air passed out through the exhaust of the wind tunnel. At this point, a

sample of this air was drawn, through the small white Teflon tubing placed inside the

exhaust vent of the wind tunnel. The sample was taken from the centre of the exhaust

ducting. The air sample was drawn into the drums shown in Figure 3.5, and was

then transported to the olfactometer for analysis. All parts of the sampling equipment

that were exposed to odorous air were constructed from Grade 316 stainless steel or

polytetrafluoroethylene (PTFE).

The odorous sample air was contained within new plastic Melinex� (Polyethylene

Terephthalate) bags inside the sample drums. Initially the bags were empty, and were

pre-conditioned by filling with odorous air and then evacuated prior to taking a sample,

as per the standard. This allowed any ‘bonding’ of odour particles (to the inside of the

bag) to occur before the sample is introduced into the bag. This aimed to increase the

accuracy of results, as no odour particles were lost from the sample to bonding.
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Figure 3.1: Launching the Wind Tunnel onto the Pond Surface

Figure 3.2: Wind Tunnel in Lifted Position
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Figure 3.3: Wind Tunnel, Ready to be lowered into Sampling Position

Figure 3.4: Wind Tunnel in Sampling Position
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Figure 3.5: Odorous Air Sample Collection Drums

The drums were airtight, and air was pumped from the drums to draw the odorous air

sample into the bags (in a lung arrangement). This ensured minimal contact of the

sample air with the equipment. It took around 6 minutes to fill the sample bag within

the drum.

3.4 Additional Measurements taken at time of Sampling

Additional measurements taken at the time of sample collection include the ambient

temperature and humidity, and the wind speed at the throat of the wind tunnel. This

was done with a Thermosystems Incorporated (TSI) Model 8355 hot wire anemometer.

By taking this measurement, and knowing the physical dimensions of the wind tunnel,

the wind velocity at the base of the tunnel (the odour emitting surface) could be

determined. For the wind tunnel used by the DPI and F, a wind speed of 4 m/s

equates to a wind speed of 0.37 m/s at the surface (a factor of 0.093). The wind speed

at the emitting surface is required when correlating wind tunnel odour measurements
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Figure 3.6: Pond Effluent Temperature Sensor / Logger

to climatic wind speed data.

Soon after the inflow event occurred, data loggers measuring pond temperature were

floated on the surface of the primary holding pond at each feedlot. The loggers took

pond temperature measurements every ten minutes, approximately 5 cm below the

pond surface. The photographs in Figures 3.6 and 3.7 show the data logger itself, and

its operating position on the surface of the primary holding pond at Feedlot B.

Both feedlots have automatic weather stations (AWS) installed, that were used ex-

tensively throughout this project. Data collected included air temperature, humidity,

wind speed and direction, soil / manure temperature, rainfall, incoming / outgoing

solar radiation and potential evaporation (calculated).

The time and exact location of sampling and (subjective) weather conditions are noted

also, for reference.

Other data, required to formulate the pond odour emissions model, that were not
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Figure 3.7: Pond Effluent Temperature Sensor / Logger In Position

directly measured (such as initial pond volumes and inflow volumes) were derived, as

detailed in Section 3.6.1.

3.5 Odour Assessment

3.5.1 Sample Stability

The odour samples, stored within the Melinex� sample bags (in the sample drums)

were taken to the DPI & F’s olfactometer for analysis. This was generally done within

24 hours of collection. The Standard recommends that samples be analysed within

30 hours of collection (Standards Australia and Standards New Zealand, 2001). The

project undertaken for Meat and Livestock Australia, of which this work is part, has

undertaken some work into sample stability (Nicholas, 2004), and concluded that the

deterioration of odour samples over the time frames encountered is acceptable for the

purposes of this project. Figure 3.8 shows the variation in odour concentration from
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Figure 3.8: Variation in Odour Concentration with Elapsed Time to Anal-
ysis

samples taken in duplicate / triplicate (at the same time and location) with differing

elapsed times to analysis. The data in Figure 3.8 is from Feedlot A only, and it can be

seen that all samples were analysed within 6 hours of sample collection. An equivalent

analysis was not possible from Feedlot B, as all identical samples were analysed with

similar elapsed times after collection. All samples from Feedlot B, excepting the first

day of sampling, were analysed at between 21–22 hours after collection. The first day

of samples were analysed approximately 6 hours after collection.

3.5.2 Olfactometry

The Department has a state of the art forced-choice dynamic olfactometer, operated in

accordance with the Australian / New Zealand Standard - Stationary Source Emissions

- Determination of Odour Concentration by Dynamic Olfactometry (AS/NZS 4323.3).

The following description of the olfactometry process and calculation is taken from

Hudson et al (2004) - The Effect of Loading Rate and Spatial Variability on Pond

Odour Emission.
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The Olfactometer consists of a panel of eight people (assessors), used to

evaluate the ‘air’ being presented at three sniffing ports. Each panellist was

first screened with the reference gas (n-butanol) to ensure their detection

thresholds for the reference gas were between 20 and 80 parts per billion

(ppb). This was in accordance with the Standard. Two of the ports were

supplied with clean, odour free air, and the third was supplied with (diluted)

odorous air. The panellists then had to select which port contained the

odorous air, and give an indication of confidence in their choice (certainty,

inkling or guess).

The process was repeated, doubling the strength of the odour sample pre-

sented each time until each panellist had responded with certainty and cor-

rectly for two consecutive presentations. Each panellist’s individual thresh-

old estimate (ZITE) was then determined by calculating the geometric mean

of the dilution at which the panellist did not respond with certainty and

correctly and the first of the two dilutions where the panellist did respond

with certainty and correctly. This entire process is defined as a round, and

three rounds were completed for each sample, provided enough sample was

available.

At the end of the three rounds, the results of the first round were discarded

in accordance with the Standard. The results from rounds two and three

were then geometrically averaged (ZITE). The ratio between ZITE and

ZITE is defined as ∆Z. The calculation of ∆Z is presented in Equations 3.1

and 3.2.

If(ZITE) >= (ZITE) then ∆Z =
(ZITE)
(ZITE)

(3.1)

If(ZITE) <= (ZITE) then ∆Z =
(ZITE)
(ZITE)

(3.2)

If ∆Z is greater than ± 5 then all ZITEs of the panel member with the

largest ∆Z are excluded from the data set. The screening procedure is

then repeated, after recalculation of ZITE for that measurement. If a panel

member again did not comply, the panel member with the largest ∆Z was
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omitted. This was repeated until all the panel members in the dataset had

an acceptable ∆Z value. The last value of ZITE is then defined as the odour

concentration and expressed as odour units per cubic metre (ou/m3).

To calculate the odour emission rate (OER), Equation 3.3 is used.

OER = CVt
At

As
(3.3)

where C is the odour concentration in the bag; Vt is the wind speed inside

the tunnel; At is the cross-sectional area of the tunnel; and As is the surface

area covered by the tunnel. OER is measured in units of odour units per

second square metre (ou/s.m2)

This equation assumes that; All background odour in the air introduced

to the wind tunnel is removed by the carbon filter, and there is complete

mixing between the emissions and airflow in the tunnel.

The calculated OER was then scaled to a standard tunnel wind speed of 1

m/s according to Smith and Watts (1994), using Equation 3.4.

Ev

E1
= Vt

0.63 (3.4)

The exponent of 0.63 was derived as a factor for wind tunnels from research

conducted on solid surfaces at feedlots. This exponent does not apply to

liquid surfaces such as anaerobic ponds. However, Pollock (1997) recom-

mended the use of an exponent of 0.5 for liquid surfaces (based on the work

of Bliss et al, 1995). This value was adopted for use in all calculations of

odour emission rate in this poject.

3.6 Methods of Data Analysis

The analysis of the collected data was a significant component of this project. Most

of the required data was ready at hand, however, some data required was not directly

measured and needed to be derived from other data.
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3.6.1 Derived Data Collation

In order to better understand, and subsequently model, the odour emissions from the

effluent ponds after a significant inflow, some data was required that was not measured.

This included the volume of effluent inflowed to the pond system, and the initial volume

of effluent in the ponds. This was not measured for a number of reasons. Firstly, the

amount of effluent in the ponds (initially and following the inflow event) is difficult to

measure and assess. Secondly, the co-operating feedlots were already committing a lot

of resources and time toward the project, and it was considered unnecessary to burden

them with additional daily data collection and record keeping. As the ponds at both

feedlots have no system of flow measurement in place, it was also impossible to work

out actual inflow volumes in real time.

To obtain the inflow volumes, considered vital in formulating the emissions model, the

MEDLI software was employed. MEDLI (Model for Effluent Disposal through Land

Irrigation) is a program that was jointly developed by the CRC for Waste Manage-

ment and Pollution Control, the Queensland Department of Natural Resources and the

Department of Primary Industries and Fisheries (v2.0, 2003), to model the generation

and disposal of effluent from piggeries, sewage treatment plants, feedlots, dairies, etc.

MEDLI includes a feedlot module, which, after input of various feedlot specific pa-

rameters and a site specific climate file, will return, among a host of other modelled

parameters, values of inflow to the effluent pond system. As the model is focussed on

the primary holding pond (see Chapter 5), the software was run with parameters to

model the inflow to this pond only.

To calculate the initial pond volumes, photographs taken during the sampling period

were analysed. Many photographs were taken each day that sampling took place.

Photographs of the ponds, depth gauges (if present) and permanent fixtures in the

pond were taken. Analysing these defined the depth variation in the ponds over the

sampling period. Coupled with an aerial photo (Feedlot A) and a scaled, contoured

site plan (Feedlot B) the volume of each primary holding pond could be calculated,

to an estimated accuracy of ±0.5 ML. The task for Feedlot A was made considerably

easier, as the photographic evidence revealed that the primary holding pond was dry
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Figure 3.9: Feedlot A – AutoCad-manipulated Aerial Photograph

prior to the inflow. However, this did pose a problem with the modelling, as detailed

in Chapter 5.

Feedlot A Inflow Volume Calculation

The MEDLI feedlot module was run to determine the inflow volume to the primary

holding pond. MEDLI has many input parameters which can be adjusted to suit a

particular feedlot. As many of these input parameters are required for the effluent

irrigation modelling, they were ignored (i.e. left as default values), as they had no

effect on the amount of effluent inflow to the pond system. The most important factors

in determining the inflow volume were the areas of the feedlot (pen, hard and soft

area). Pen area is obviously the area of the feedlot of which is taken up by cattle pens.

Hard area is the area that is relatively impervious (roads, drains, etc) and soft area is

grassed or cultivated area within the feedlot catchment. These areas were estimated

for Feedlot A using an aerial photograph in AutoCad. The areas were outlined on the

photograph and measured. The AutoCad drawing is included as Figure 3.9.

The sensitivity of the model to the area estimates was tested, as shown in Table 3.5.

Only the hard and soft areas were tested for sensitivity as the pen areas can be estimated
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Table 3.3: Feedlot A - Final MEDLI Parameters for Inflow Estimation
Parameter Units Value

Cattle Number head 18,000
SCU 19,114

Occupancy % 80
Cattle Entry Weight kg 350
Cattle Exit Weight kg 650
Feeding Period days 120
Pad Interface Depth mm 20
Pad Manure Depth mm 20
Average Pen Cleaning Interval days 84
Number of Pens 95
Pen Stocking Density m2/SCU 14.8
Total Pen Area ha 28.261
Feedlot Hard Area ha 10.46
Feedlot Soft Area ha 1.0
Total Catchment Area ha 39.721

reasonably accurately from the aerial photograph.

The inflow volume to the pond system was most sensitive (5%) to the estimate of hard

and soft areas, as shown in Table 3.5. (Only the soft area was changed, and the hard

area reduced to maintain correct catchment area). However, no improvement to the

accuracy of the estimation of these areas could be made, and hence this small sensitivity

was accepted.

The other factors required (that would impact on the estimation of inflow) were ei-

ther supplied by the management of Feedlot A or measured throughout the course of

this project, and were considered reliable. These factors were also adjusted to test

sensitivity, as shown in Table 3.5.

The final parameters accepted for the MEDLI run, which returned the value of inflow

into the effluent pond system for Feedlot A, are listed in Table 3.3. Again the emphasis

is made that there are many input parameters needed to run MEDLI, however the

parameters listed are those which directly affect the amount of runoff, and consequently

inflow into the effluent pond system.

MEDLI was run for the full period of available climate data (47 years), to allow the

system to come to equilibrium.
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Table 3.4: Feedlot A - MEDLI Values of Effluent Inflow from Rainfall
Date Rainfall (from MEDLI, mm) Inflow (m3)

5 December 2003 21 3,942
6 December 2003 81 24,345
7 December 2003 22 5,265

Total 124 33,552

Table 3.5: Feedlot A - Sensitivity Analysis of MEDLI Parameters
Input Parameter Old Value New Value % Change New Inflow Error (%)

Soft Area 1.00 3.00 66.6 31,815 -5.20
Cattle Exit Weight 650 600 8.33 33,717 0.50
Overall Pad Thickness 40 20 100 34,098 1.75
Pen Cleaning Interval 84 56 33.3 33,765 0.63

The MEDLI predicted inflow volumes for each day of the rain event, and the actual

rainfall which produced them, are listed in Table 3.4.

It is noted that not all parameters were tested for sensitivity. Some parameters are

contingent on others, such as the hard / soft areas and cattle weights / feeding period,

and cannot be adjusted separately.

As can be seen, the sensitivity of the final inflow volume to all these factors was less

than ±5%. This is acceptable due to the limited accuracy of initial effluent pond volume

estimations.

Feedlot A - Primary Holding Pond Initial Volume Estimation

Photographic evidence taken prior to the time of inflow has clearly indicated that

the primary holding pond at Feedlot A was completely dry at the time of inflow. A

photograph of the pond condition at this time is provided in Figure 3.10.

Feedlot A - Inflow Retained by Sedimentation Basins

The sedimentation basin retains a certain amount of effluent after a runoff event. In

time, this effluent either passes through the weir into the primary holding pond or

evaporates. For the modelling of the primary effluent pond, this volume of effluent can

be considered to be removed, as it does not enter the primary pond immediately.
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Figure 3.10: Feedlot A - Primary Holding Pond Primary to Inflow

Figure 3.11: Feedlot A - Main Sedimentation Basin Prior to Inflow
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Figure 3.12: Feedlot B – AutoCad Design Drawing

The two sedimentation basins have a total area of 3.01 ha, and were (almost) dry at

the time of inflow. Figure 3.11 shows the main sedimentation basin prior to the inflow.

The depth of effluent retained by the weirs in both basins is about 150 - 200 mm. As

100 mm of effluent over 1 ha is 1 ML, the amount of effluent retained was 6.02 ML.

This volume was removed from the inflow volume to the primary holding pond.

Hence the total volume of inflow to the first holding pond after the rain event was

33.552 - 6.02 = 27.53 ML.

Feedlot B

Again the MEDLI feedlot module was employed to determine the inflow volumes into

the effluent pond system at Feedlot B. Feedlot B is located on the crest of a hill, and as

such the feedlot drains into three separate effluent systems. The effluent system under

consideration was the main one (known as the South-Eastern Holding Ponds), which

accepted runoff from over half of the feedlot. The primary holding pond of this system

accepts effluent overflowing from two separate sedimentation basins (NE and SE), as

can be seen in the AutoCad design drawing in Figure 3.12.

The two sedimentation basins, which overflow into the pond under consideration, accept

runoff from the entire eastern side of the feedlot. Figure 3.12 shows where the drainage
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lines split the feedlot in half. The relative pen, hard and soft areas could be found

relatively easily from Figure 3.12, using AutoCad software. The total capacity of the

feedlot was known, however the number of cattle either side of this drainage line was

not. Hence some interpolation of cattle numbers was required to determine this, using

the stocking density and known pen area. This helped to determine some of the input

parameters for MEDLI.

A total of 72 pens exist within the SE Effluent Ponds Catchment. 36 pens in the north-

east quadrant of the feedlot drain to the NE sedimentation basin, before overflowing to

the primary holding pond of the south-east pond system. The balance of the pen area

drains to the SE sedimentation basin.

The 72 pens have a total area of 238,000 m2 (measured from the AutoCad plan).

This calculates to 3305 m2/pen, which agrees well with data supplied from the feedlot

management itself (3300 m2 quoted). At an average stocking rate of 13.6 m2/head,

this is 243 head per pen (on average). Hence there is 243 x 72 = 17496 head in the

catchment, which at 95% occupancy, and with a JapOx SCU conversion (QDPI, 2000)

of 1.147, gives a total number of SCU’s in the catchment (at any particular time) of

19069. From the AutoCad drawing, the number of pens is 72, with a stocking rate of

13.6 m2/head (or 11.86 m2/SCU), hard area of 14.827 ha and a soft area of 5.129 ha.

The pen area, as stated previously, is 23.8 ha. All the relevant input parameters

required for the MEDLI run are listed in Table 3.6.

The MEDLI predicted inflow volumes for each day of the rain event, and the actual

rainfall which produced them, are listed in Table 3.7.

As the exact amount of soft area was not certain, the sensitivity of the area parameters

was checked. In the most extreme, where the proportion of soft and hard area was

changed from approx 25:75 to 35:65, the changes to the inflow amounts changed by 5%

or less. The pen area was held constant, as its value was estimated accurately from the

design drawing. The other parameters were not tested for sensitivity as it was proven

for Feedlot A that the effect of any error was minimal.

Feedlot B - Primary Holding Pond Initial Volume Estimation
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Table 3.6: Feedlot B - Final MEDLI Parameters for Inflow Estimation
Parameter Units Value

Cattle Number head 17,496
SCU 20,068

Occupancy % 95
Cattle Entry Weight kg 420
Cattle Exit Weight kg 720
Feeding Period days 300
Pad Interface Depth mm 20
Pad Manure Depth mm 20
Average Pen Cleaning Interval days 90
Number of Pens 72
Pen Stocking Density m2/SCU 11.9
Total Pen Area ha 23.800
Feedlot Hard Area ha 14.827
Feedlot Soft Area ha 5.129
Total Catchment Area ha 43.756

Table 3.7: Feedlot B - MEDLI Values of Effluent Inflow from Rainfall
Date Rainfall (from MEDLI, mm) Inflow (m3)

1 October 2003 67 21,987
2 October 2003 38 12,519

Total 105 34,506

The volume of effluent in the primary holding pond at Feedlot B was estimated using

a combination of photographic evidence and the design drawing in Figure 3.12. From

the photograph in Figure 3.13, taken before the inflow event, the level of the pond

can be seen relative to the mesh cage. The maximum capacity of this pond (36 ML)

was quoted from the feedlot management (Tudor, P., 2004 pers. comm.) to occur at

650 mm above the mesh cage. It can be seen that the level of effluent is approximately

300 - 350 mm below the top of this structure. Hence the level is about 950 - 1000 mm

below maximum. The area at Top Water Level (TWL) of this pond is 3.05 ha. As

100 mm depth over 1 ha = 1 ML, there is approximately ( 950 / 100 ) x 3.05 = 29 ML

of effluent ‘missing’ from the pond. As the maximum capacity is 36 ML, this implies

that there is about 7.0 ML of effluent present in the pond.

Needless to say, there have been some gross assumptions made in this estimate. This

assumes that the pond has vertical sides and a flat bottom. In reality this is not the

case, but close examination of the contour lines in Figure 3.12 (not shown for clarity)

shows that these assumptions are acceptable. The level of accuracy required for the
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Figure 3.13: Feedlot B - Primary Holding Pond Prior to Inflow

model development has already been limited by the estimates of inflow volume, however

a measure of the level of accuracy of this estimate cannot be made. In the absence of a

better method, the estimate will be accepted. The impact of this estimate is assessed

in Chapter 5.

Feedlot A - Inflow Retained by Sedimentation Basins

The sedimentation basins at Feedlot B also retain a certain amount of effluent, which

cannot be considered in the modelling of the primary holding pond. The photographic

evidence of the north-east sedimentation basin shows that the basin was nearly full

at the time of inflow (see Figure 3.14) and as such would not have retained any fresh

effluent.

The south-east sedimentation basin was not full, and therefore retained some effluent

before overflowing to the primary holding pond. Figure 3.15 shows the level prior to

the inflow event. (It needs to be stated that even though the weirs at both feedlots

are semi-permeable (wooden boards), the effluent is indeed removed from the inflow to
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Figure 3.14: Feedlot B - North-East Sedimentation Basin Prior to Inflow

the primary holding pond, as the effluent takes a number of days to move through the

weir.)

The sedimentation basin covers an area of 0.86 ha. The level had to rise 300 mm to

overflow, and therefore the amount of effluent retained was ( 300 / 100 ) x 0.86 ha,

which is approximately 2.58 ML. This volume is therefore removed from the total inflow

volume calculated.

Hence the total volume of inflow to the first holding pond is 34.506 - 2.58 = 31.93 ML.
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Figure 3.15: Feedlot B - South-East Sedimentation Basin Prior to Inflow



Chapter 4

Results

4.1 Odour Emission Rate Results

The odour concentration and emission rate data was calculated by the Department of

Primary Industries and Fisheries as part of their olfactometry service, and the relevant

data was delivered to FSA Consulting for analysis via e-mail. All complete odour

emission rate data sets / working spreadsheets have been included in full in Appendix B.

The odour emission rate data measured from both feedlots is best displayed in graphical

form to better understand the pattern of odour emission; however the average odour

emission data for each of the ponds at both feedlots is included.

4.1.1 Feedlot A

The odour emission rate over the sampling period (34 days after the rainfall event)

at Feedlot A for the three effluent treatment areas (sedimentation basin, primary and

secondary holding ponds) is shown in Figure 4.1. Note that the samples were taken in

duplicate or triplicate, and as such the average odour emission rate of these samples

was used to define the pattern.

The odour emission data from Feedlot A is included in Table 4.1. From Figure 4.1, it



4.1 Odour Emission Rate Results 43

Figure 4.1: Feedlot A - Odour Emission Rates from All Effluent Ponds

Table 4.1: Feedlot A - Odour Sampling Results (All Ponds)
Sampling Date Pond Avg. Odour Emission

Rate (ou/s.m2)
8 Dec 2003 Sedimentation Basin 102

Primary Holding Pond 132
Secondary Holding Pond 77

10 Dec 2003 Sedimentation Basin 328
Primary Holding Pond 578

Secondary Holding Pond –
12 Dec 2003 Sedimentation Basin 198

Primary Holding Pond 269
Secondary Holding Pond 196

15 Dec 2003 Sedimentation Basin 70
Primary Holding Pond 161

Secondary Holding Pond 91
17 Dec 2003 Sedimentation Basin 64

Primary Holding Pond 122
Secondary Holding Pond –

19 Dec 2003 Sedimentation Basin 44
Primary Holding Pond 76

Secondary Holding Pond 53
22 Dec 2003 Sedimentation Basin 59

Primary Holding Pond 105
Secondary Holding Pond –

8 Jan 2004 Sedimentation Basin 43
Primary Holding Pond 57

Secondary Holding Pond 40
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can be seen that the primary holding pond peaked close to 600 ou/s.m2, the secondary

holding pond peaked just below 200 ou/s.m2 and the sedimentation basin peaked above

300 ou/s.m2. This pattern of emission is similar to that reported by Casey et al (1997).

Focussing on the primary holding pond (the pond which will be modelled) we see a

sharp rise to a peak (578 ou/s.m2) after 5 days. Within two days the odour emission

rate had dropped to less than half this peak. After this the odour emission rate tended

to plateau out, and slowly decreased over the remainder of the sampling period. The

pattern also shows a dip in the odour emissions at the 14 day (after the rain event)

mark. This cannot be logically explained, and is attributed to the inherent variability

in olfactometry.

It is noted that both the sedimentation basin and the secondary holding pond both

displayed a similar pattern of odour emission. This is not always the case, as the

characteristics of both ponds can be heavily influenced by management. The movement

of effluent from the sedimentation basin is weir-controlled, and the movement of effluent

into the secondary holding pond is controlled by pumping. After a rainfall event of this

magnitude, pumping into the secondary holding pond usually occurs quite quickly, as

the primary holding pond level needs to be reduced in case of further rain. It is clear

that the level of odour emissions from the secondary holding pond will alter with the

amount of ‘untreated’ effluent being introduced to it through pumping.

4.1.2 Feedlot B

The odour emission rate over the sampling period (29 days after the rainfall event)

at Feedlot B for the three effluent treatment areas (sedimentation basin, primary and

secondary holding ponds) is shown in Figure 4.2. Note that again the samples were

taken in duplicate or triplicate, and as such the average odour emission rate of these

samples was used to define the pattern.

The odour emission data is included in Table 4.2. As shown in Figure 4.2, the sedi-

mentation basin showed a peak emission rate of just over 300 ou/s.m2. The primary

and secondary holding ponds’ odour emissions peaked around the 450-480 ou/s.m2
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Figure 4.2: Feedlot B - Odour Emission Rates from All Effluent Ponds

Table 4.2: Feedlot B - Odour Sampling Results (All Ponds)
Sampling Date Pond Avg. Odour Emission

Rate (ou/s.m2)
3 Oct 2003 Sedimentation Basin 56

Primary Holding Pond 99
Secondary Holding Pond –

7 Oct 2003 Sedimentation Basin 115
Primary Holding Pond 167

Secondary Holding Pond 204
9 Oct 2003 Sedimentation Basin 244

Primary Holding Pond 454
Secondary Holding Pond 481

12 Oct 2003 Sedimentation Basin 325
Primary Holding Pond 374

Secondary Holding Pond 238
14 Oct 2003 Sedimentation Basin 273

Primary Holding Pond 295
Secondary Holding Pond 201

16 Oct 2003 Sedimentation Basin 134
Primary Holding Pond 227

Secondary Holding Pond 204
23 Oct 2003 Sedimentation Basin 137

Primary Holding Pond 124
Secondary Holding Pond 129

30 Oct 2003 Sedimentation Basin 131
Primary Holding Pond 148

Secondary Holding Pond 225
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mark. This pattern of emission is also similar to that reported by Casey et al (1997),

with emissions peaking 8 days after inflow, followed by a relatively uniform and slow

reduction in emission rates over the next 25-30 days.

Again focussing on the primary holding pond, the odour emission rate rose to a peak

(454 ou/s.m2) after 8 days, with a much broader peak displayed than at Feedlot A.

The odour emission decreased steadily until the the final day of sampling, where the

emission rate was seen to increase slightly. This may be explained through a further

small inflow to the pond system on the 19th of October (18 days after the rain event,

see Table 3.2 in Chapter 3). The small rainfall event on the 6th of October may have

also contributed to the broader peak of the graph (i.e. elevated odour emission rate

over a longer period of time) shown at Feedlot B.

As mentioned earlier in this chapter, the patterns of odour emission from the sedimen-

tation basin and secondary holding ponds may vary significantly from the pattern from

the primary holding pond due to management decisions. This is shown in Figure 4.2,

where the pattern of odour emissions for the sedimentation basin is quite irregular, in

comparison to the pattern for the primary holding pond. It is noted here that the man-

agement of the sedimentation basin at Feedlot B is quite different to that at Feedlot A.

The sedimentation basin at Feedlot B is weir-controlled, and a 200-300 mm depth of

effluent is kept in the basin at all times. Whilst the weir at Feedlot A is also controlled

by a weir, the sedimentation basin is allowed to dry out completely following a runoff

event.

The pattern of odour emission for the secondary holding pond is fairly similar to the

primary holding pond. While effluent was still running off the feedlot catchment into

the holding ponds after the rain event, management had decided to allow some effluent

to flow into the secondary holding pond. This meant that at the same time that the

primary holding pond was filling with fresh effluent, the secondary holding pond was

also receiving ‘untreated’ effluent, with a similar effect on odour emissions. Unfortu-

nately neither feedlot kept records on the amounts of effluent pumped between the two

holding ponds, or the days on which pumping occurred. It can also be seen in Fig-

ure 4.2 that the odour emissions from the secondary holding pond increased markedly

towards the end of the sampling period. One would expect that this is due to a further
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Figure 4.3: Feedlot B - Baseline Odour Emission Rates from All Effluent
Ponds

pumping event into the secondary pond.

The ‘baseline’ odour emission rates from undisturbed ponds at Feedlot B are shown in

Figure 4.3. These odour samples were taken from ponds which had not experienced an

inflow for many months, and as such the odour emission rates would be expected to

be slightly lower than ‘normal’, as the ponds would have had ample time to come to

equilibrium. At most times of the year, ‘normal’ odour emission rates would include

some effect from the last inflow event, as it can take some time for ponds to come to

equilibrium.

The ponds at Feedlot A were dry before the inflow events described in these results, and

therefore there is no equivalent estimate of ‘baseline’ odour emission rates at Feedlot A.

However, some measurements were taken from the secondary holding pond at Feedlot

A prior to the inflow, with odour emission rates close to 5 ou/s.m2. This value of odour

emission rate has been accepted as the baseline odour emission rate for the primary

holding pond at Feedlot A.

The last day of the inflow sampling odour emission rates (for the primary holding pond

at Feedlot A) were assumed to be the ‘baseline’ rates for the purposes of the larger
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project for Meat and Livestock Australia, however these odour emission rates would

still display some of the effects of the inflow event.

4.1.3 Discussion of Odour Emission Rate Results

There are some important differences in the two patterns of odour emissions (from the

respective primary holding ponds). The first is the delay in the times to peak between

the two feedlots. Feedlot A rose quickly to peak on the 5th day, where Feedlot B peaked

on the 8th day after the rain event. This could be due to a number of factors, but it

is postulated that the difference in climate between the feedlots is responsible. Feedlot

B is situated in a cool climate, and the sampling was carried out in the spring whereas

Feedlot A is in a hot climate, and the sampling was carried out at the beginning of

summer. The average ambient temperature difference between the two feedlots was a

full 10° warmer at Feedlot A, during their respective sampling periods.

Feedlot B also displays a much broader peak of odour emissions, with rates remaining

elevated for a longer period of time than at Feedlot A. This is also thought to be due

to the different climates in which the two feedlots are situated. In the same way that

the odour emissions took longer to rise to a peak, the odour emissions took longer to

decline after the peak.

4.2 Other Measured Data

4.2.1 Pond Surface Temperature

As mentioned previously in Chapter 3, the surface temperature of the primary holding

ponds at both feedlots was logged every ten minutes. The change in pond surface

temperature at both feedlots over the sampling period is shown in Figures 4.4 and 4.5.

The odour emission pattern from Feedlot B (in Figure 4.5) does look slightly different

to that depicted in Figure 4.2, as the odour samples were collected separately, from the

same pond, at slightly different times. Hence all samples could be shown in comparison
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Figure 4.4: Feedlot A - Variation of Pond Surface Temperature At Times
of Sampling

Figure 4.5: Feedlot B - Variation of Pond Surface Temperature At Times
of Sampling
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Figure 4.6: Feedlot A - Comparison of Pond Surface and Ambient Temper-
ature

to the relative pond surface temperature. In Figure 4.4, the samples were taken in

duplicate / triplicate (at the same time), so this plot shows the average odour emission

rate.

It is also noted that the pond temperature loggers were not installed into the ponds until

the 15th of December (2003) at Feedlot A, and the 9th of October (2003) at Feedlot B.

Hence to complete the comparison plot with the odour emission data, the temperatures

up to the date of installation were assumed from ambient temperatures (as the pond

surface temperature follows the ambient temperature quite closely). A comparison of

the pond and ambient temperatures is given in Figure 4.6, for the sampling period at

Feedlot A.

It is clear that the pond surface temperature follows the daytime higher temperatures

quite closely. However the ponds remain much warmer during the night, with a large

difference between the measured temperatures. This has little bearing on the assumed

pond surface temperatures (to complete the data set for the comparison in Figure 4.4)

as all the measured pond temperatures were above 25°. At this range of temperatures,

there is little difference between the pond surface and ambient. Similar results were

found at Feedlot B.
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4.2.2 Discussion – Pond Surface Temperature Results

It is reasonably clear that there is no direct relationship between the pond surface

temperature and the odour emission rate. The pond surface temperature at both

feedlots remained reasonably steady over the days and times of each odour sampling

session. It was unfortunate that the temperature of the pond liquor could not be

measured at greater depths, or a range of depths, as this would have given a better

indication of any temperature changes in time.

Having said this, it is likely that small changes in temperature would alter the bacterial

activity significantly (and the corresponding odour production) and as such, a sensitive

thermometer would be required to pick up these slight changes.

As the temperature of each pond measured was taken at the effluent surface (at a depth

of 4-5 cm), it could be safely assumed that as the pond temperature follows the ambient

temperature quite closely (during the day), any relationship formed between the odour

emission rate and the ambient temperature would implicitly include the pond surface

temperature.

4.2.3 Effluent Analyses

A set of effluent samples were collected from the primary holding pond at Feedlot B,

spanning the sampling dates from the 3rd of October 2003 to the 16th of October 2003.

Unfortunately, only one effluent sample could be collected from Feedlot A, which was

also taken from the primary holding pond, on the first day of sampling (the 8th of

December, 2003). An analysis of the effluent sample analysis results was carried out.

Many parameters are analysed; however a few of the more important parameters (i.e.

parameters that have been shown to vary after a rainfall event (Casey, et al, 1997))

have been plotted and are shown here, in Figures 4.7 to 4.10. A copy of the analysis

results sheet, returned from the Toowoomba City Council’s Water Testing Laboratory,

is attached as Appendix C.
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Figure 4.7: Feedlot B Effluent Analysis - Volatile Solids Variation Over
Sampling Period

Figure 4.8: Feedlot B Effluent Analysis - Total Kjedahl Nitrogen Variation
Over Sampling Period
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Figure 4.9: Feedlot B Effluent Analysis - Electronic Conductivity Variation
Over Sampling Period

Figure 4.10: Feedlot B Effluent Analysis - pH Variation Over Sampling
Period
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4.2.4 Discussion – Effluent Analysis Results

The effluent analyses carried out on the samples from Feedlot B have been useful,

however they have not shown any conclusive evidence as to a relationship with the odour

emission rate. The only relationship that may exist is with the electronic conductivity

(EC), as shown in Figure 4.9, with this changing in a similar manner to the odour

emission rate. However, this is not seen to be significant as there does not seem to be

any logical reason why the EC could reduce in value (as shown in Figure 4.9). The

EC is essentially a measure of salt content, and as salt does not evaporate, without a

dilution of low EC liquid (either effluent or water), it does not seem feasible that the

EC could be lowered through bacterial activity alone. However, Casey et al (1997)

reported pond chemistry results from their studies of effluent ponds after inflow. They

reported a substantial decrease in EC soon after an inflow in one of the ponds measured,

followed by a gradual increase.

The pH was inconclusive as to any relationship with the odour emission rate, with the

levels remaining stable, however the graph in Figure 4.10 does show a spike in value

with the last effluent sample. The pH levels reported by Casey et al (1997) showed a

different pattern, with the pH dropping substantially soon after the inflow, and then

a slow return to previous levels. A more thorough review of this report is included in

Chapter 2.

The Volatile solids content and the Kjedahl Nitrogen content reduced steadily over the

period of effluent samples. This is to be expected as the bacterial population steadily

consume and degrade these substances, producing odour in the process.

The available data does suggest that pond chemistry parameters can indicate upset

conditions within feedlot holding ponds following inflow events. Sudden substantial

changes in electrical conductivity and / or pond pH are likely to provide the most

reliable indicators of elevated pond odour emission rates.

However, the magnitude and length of elevated odour emissions is likely to vary with

climate, pond design, pond management, and the time elapsed since the previous inflow

event. Consequently, an extensive data set would be required to enable changes in pond
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odour emission rate after inflow events to be predicted from pond chemistry data. Also,

the fact that the samples were only taken from one feedlot makes it difficult to draw

meaningful conclusions for use in this project.



Chapter 5

Model Development

5.1 Initial Analyses

The model development took place after an analysis of the key parameters affecting the

odour emissions, the limiting factors and the potential data sources was undertaken.

These issues are addressed in the following sections.

5.1.1 Key Parameters Influencing Odour Emissions

There are a number of key parameters that influence the odour emissions from a feedlot

effluent pond after an inflow event. The most obvious influencing parameter is the rel-

ative volume of fresh inflow to the volume of effluent already present in the pond. The

effluent initially present in the pond provides the necessary residual bacterial popula-

tion to begin the decomposition of any fresh effluent introduced. As the volume of fresh

effluent increases, the ratio of fresh effluent to existing effluent increases, and conse-

quently the odour emissions would be seen to increase also (as the bacterial population

present in the pond becomes less and less adequate in breaking down the fresh organic

matter). This parameter was also investigated as part of the MRC project (Casey et

al, 1997).

The number of days since the rain event is also a key parameter. The pattern of odour
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Figure 5.1: Comparison of Odour Emission Rate Patterns from the Primary
Holding Pond at Both Feedlots

emissions has been displayed, and the rise and fall of odour emissions occurs over a

time period of around 30-40 days.

The data has also shown that the ambient temperature also influences the odour emis-

sions after an inflow event. The warmer climate at Feedlot A displayed a higher peak

odour emission rate and a faster rise to that peak than that at Feedlot B, where the

average ambient temperature at the time of sampling was some 10 degrees cooler. This

can be seen in Figure 5.1, which shows the odour emissions pattern from the primary

holding pond at both feedlots.

The effect of the pond surface temperature was investigated and discussed in Chapter 4.

The temperature data did not display any relationship to the odour emission rate, in

any of the ponds where loggers were installed. However, the pond surface temperature

is implicit in the ambient temperature (see Section 4.2.2 in Chapter 4), and as such

any effect it may have is accounted for in that parameter.

The available data also suggests that pond chemistry parameters typically indicate up-

set conditions within feedlot holding ponds following inflow events. This was discussed

in detail in Chapter 4. As discussed, an extensive dataset would be required to enable
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changes in pond odour emission rate after inflow events to be predicted from pond

chemistry data. As we do not have an extensive dataset (two feedlots only), and as

there is a distinct lack of background research into this area of feedlots, it is difficult

to use pond chemistry in the formulation of any model.

5.1.2 Practical Limitations to Model Development

The practical limitations on any odour emissions model developed for feedlot effluent

ponds are significant. Some of the limitations described were beyond the control and

scope of this project.

The time and monetary investment in the odour sampling and assessment after a single

runoff event at one feedlot is considerable, but to develop a robust model numerous

datasets are required (maybe 10+?). The fact that odour samples need to be taken

for up to 40 days since the rainfall event further increases the cost of the research.

Coupled with this, effluent samples would need to be drawn and analysed. The cost of

this research, with extensive odour and effluent analysis costs, is beyond the reach of

most organisations and industry bodies.

Feedlots vary widely in design and management and this limits the applicability of

odour models. Every feedlot is different, with different layouts, slopes and pond designs.

Every facet of a feedlot’s operation will impact on the effluent generated (pond design,

chemistry, bacterial mechanism in the pond, etc) and therefore will affect the odour

emissions. This is a big limitation on accurate odour modelling from effluent ponds.

The differing climates in which feedlots in Australia are located also present another

level of uncertainty. The climate, in particular the temperature, affects the level of

bacterial activity in the pond. According to K.D Casey (2004, pers. comm.), lower

winter temperatures alter the balance of the bacterial population. Temperatures below

15°C will produce partial breakdown and increased levels of intermediate volatile or-

ganic acids. pH will be lowered by the level of increased acidity. Many volatile organic

acids are highly odorous, and an increase in production may lead to increased odour

emission rates. Galvin et al (2002) reported seasonal variation in piggery ponds with
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winter odour emission rates approximately double summer emission rates. The impact

of low temperatures on microbial populations was proposed as the primary cause of

these increased winter odour emissions.

This is obviously a point of discussion, and the seasonal change in odour emissions is a

confounding factor in the development of an odour emissions model.

The spatial and temporal variability of a feedlot effluent pond is also a point of dis-

cussion. There has been little research into the variability of odour emissions across

feedlot ponds in space and time. However, research has been carried out investigating

this variability in piggery ponds, (Hudson et al, 2004) and some spatial and temporal

variability of odour emissions from piggery effluent ponds was reported. It was also

reported that the spatial variability appeared random across the ponds measured.

No attempts were made in this project to accommodate the spatial and / or temporal

variability that may be present in feedlot effluent ponds, due mainly to the limited

knowledge that exists regarding this issue. However, if this variability is significant,

then this will compromise the model developed.

5.1.3 Data Sources for the Model

Initial Pond and Inflow Volumes

The initial pond volumes were estimated in this project using a combination of photo-

graphic evidence (taken during the sampling period), the feedlot design data and the

management practices employed. This process is described in detail in Chapter 3.

There are potentially three methods available to calculate the inflow volume to an

effluent pond: real-time flow measurement, rainfall-runoff modelling following the event

or change in pond depth. In this project, the modelling was chosen as there were no

flow measurement devices installed at either feedlot, and it was difficult to assess the

inflow accurately through depth analyses, as photographs taken were the only indicator

of the change in pond depth, and these were indicative at best.
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The runoff modelling was performed with MEDLI software, and parameters unique to

the feedlot were input, along with climate data that encompassed the rainfall event

in question. MEDLI outputs copious amounts of data, one of which is inflow to the

effluent pond system. These numbers can be used with the estimates of initial pond

level to determine the ratio of fresh to existing effluent in the pond.

Climate Data

Most modern feedlots today also have an automatic weather station installed on-site

for use in their management. This provides a ready source of climate data, including

(among others) temperature, humidity, rainfall and solar radiation. This also allows

the number of days since rain that has elapsed to be found. Both feedlots involved in

this project had automatic weather stations installed.

Pond and Effluent Data

The pond surface temperature data was collected in this project using temporary log-

gers floated out onto the pond. These particular loggers are not reusable and are ex-

pensive, and as is clear from the results (Chapter 4), the impact on the odour emissions

from the ponds was limited.

The physical chemistry of the pond effluent displays the effects of an inflow, with

changes in pH and electrical conductivity being the most obvious. However, to take

regular effluent samples before and after rainfall events and have them analysed is also

expensive, and the research is still not conclusive as to its direct effect on the odour

emissions. As a result, the effluent analyses made during this project were not used to

formulate the model.
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5.2 Model Development and Structure

5.2.1 Introduction

Upon assessing all of the limitations (see Section 5.1.2) it was obvious that a com-

prehensive model would not result from the data available and the previous research

regarding feedlot effluent ponds. However, a model was written, albeit simple, and de-

pendent only on a small number of parameters. The limited data available meant that

a model for the primary holding pond was developed only. The sedimentation basins at

both feedlots are managed quite differently (as discussed in Section 4.1.2, Chapter 4)

and hence are difficult to model. The secondary holding ponds are also influenced by

management (through pumping), and as data relating to pumping volumes, etc was

not available, a model was not able to be developed. In essence, the primary holding

pond is least affected by management. The results of this project have shown that the

primary holding pond produces the highest odour emission rates (following an inflow),

and as such the model would return conservative values of odour emissions (higher than

in reality) if applied to the other ponds / sedimentation basins.

The development of the model was carried out primarily using Microsoft Excel� spread-

sheet software. The Mathworks� mathematical software MATLAB� was initially

employed, however the advantages of real-time modification of various algorithms and

the corresponding graphical representations in Microsoft Excel� enabled much faster

development (MATLAB� is essentially command line software). The wider availability

of Excel� was also a benefit as the work was carried out over a number of different

workstations.

5.2.2 Initial Approach

The initial approach to the model development was to calculate or determine an equa-

tion, or set of equations that would describe the pattern of odour emissions displayed

in Chapter 4. This was done through a process of trial and error and consultation with

persons more experienced with mathematics. Initially an equation of the form
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Mxe(−kx) (5.1)

was found to describe the general pattern of odour emissions, with a fast rise to peak,

and a slower decay to baseline odour levels. A vast number of different values were

input to this general equation to try and fit the equation to the measured data, and it

soon became clear that whilst this equation could successfully reproduce the tail end

of the odour emissions pattern, it failed to reproduce the rising limb adequately. It was

then proposed that the pattern of emissions was made up of two stages, as the pattern

of odour emissions seems to display two separate processes, those being the fast rise

to peak of odour emissions (within the first 5-8 days); and the slower decline in odour

emission rate in the 20-30 days that follow.

Hence a different equation was found to fit the rising limb of the odour emissions

pattern. From the assumption that the odour generation from ponds is a two-stage

process, the refinement of the model could begin.

5.2.3 Model Algorithm

As Equation 5.1 was able to describe the tail end of the odour emission rate pattern,

it was retained as the second stage of the model. However Equation 5.1 was still able

to accurately reproduce the curve without the x multiplying factor, and as such this

was dropped from the second stage equation. The rising limb of the odour emissions

pattern was then analysed to see what equation would best describe it.

As the rise to peak is quite swift, an exponential or power relationship was suspected

to best describe the rising limb. It was found that a simple power relationship worked

best, of the form shown in Equation 5.2.

Kxy (5.2)

Quite obviously, there needs to be a point where the model algorithm will peak, and

change from the rising limb equation (of the form in Equation 5.2) to the tailing limb



5.2 Model Development and Structure 63

equation (of the form in Equation 5.1). This was simply set as an input parameter

into the model. As the model developed, this input was linked to a real, measured

parameter.

5.2.4 Inclusion of Measured Parameters

The conceptual model developed in Sections 5.2.2 and 5.2.3 was structured as a two-

stage algorithm. The model parameters were then modified to accept real parameter

values.

The parameters chosen were the inflow to existing volume ratio, the ambient tempera-

ture at the time of sampling and the number of days since the rain / runoff event. These

parameters were chosen as the model’s input as they were the most obvious influencing

parameters on the odour emissions, and they were easy to define and collect data for

(see Section 5.1.3). It was difficult to include any other (more specific) parameters for

reasons listed in Sections 5.1.1 and 5.1.2. The model is essentially empirical to enable

a good fit to the available data. The limited amount of data available did not expose

any meaningful relationships from which the modelling could draw from, and ensured

that an empirical model was the only feasible method of model development.

Through a process of trial and error, the parameters were fitted to the general two-stage

model developed until the best fit to the measured data was found.

The inflow to existing effluent ratio and the number of days since rain were seen as the

most important factors influencing the odour emissions. Hence they were used as the

dominant factors in the model. The ambient temperature was seen as the factor that

influenced how soon after the rain event the peak occurred, and as such was employed

to define the day of the peak odour emissions.

5.2.5 Final Model

Microsoft Excel� was used to refine the model, and the model in its complete form is

shown below.
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If x < Peak Day

Then y = 45× (1.25)x + b

Else y = M × e(−kx) + b

where x = Days Since Rain Event,

y = Odour Emission Rate (ou/s.m2),

b = Baseline Odour Emission Rate (ou/s.m2),

M = 170× (Inflow Ratio); and

k = Inflow Ratio
52.5 .

The parameter Peak Day is read from Table 5.1.

The second stage of the model will produce high values of odour emissions with low

values of x, the number of days since rain. The decisional algorithm allows only the

number of days less than the peak day to be modelled by the first stage, and as such,

if the peak day occurs earlier, the second stage of the model forces the peak odour

emissions up. The peak odour emission rate is produced from the second stage of the

model.

Explanation of Model Parameters

The Days Since Rain Event parameter is measured from the first day of the rain event.

The Baseline Odour Emission Rate parameter was necessary as the model will tail

off (given enough time) to a zero value of odour emission rate. This parameter is

essentially a transform, so that the odour emission rate returns to ‘normal’, pre-inflow

values of pond odour emissions. These values were measured, as set out in Section 4.1.2

in Chapter 4.

The Inflow Ratio is the amount of fresh effluent inflowing to the pond as compared to

the amount of effluent already present in the pond. For example a 3 ML inflow into a

pond with 1.5 ML of effluent already present would have an inflow ratio of 2 (3 ML /

1.5 ML). The initial and inflow effluent volumes were found as detailed in Chapter 3.
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Table 5.1: Lookup Table for Peak Day Determination
Temperature Range (°C) Peak Day

5 to 10 9.5
10 to 15 8.0
15 to 20 6.5
20 to 25 5.0
25 to 30 3.5
30 to 35 2.0

The Peak Day is defined by the ambient temperature, and is read from a table developed

from the measured data. This table is reproduced in Table 5.1. It is noted that the

ambient temperatures required are the daily (24-hour) average ambient temperatures

experienced during the days of the actual rainfall / runoff period.



Chapter 6

Model Analysis

6.1 Introduction

The model developed in Chapter 5 was applied to the measured data, and the perfor-

mance of the model is reported in this chapter.

The model developed needed to be analysed and tested to determine its robustness,

limits and applicability to other feedlots under similar circumstances. The fact that the

model was developed on a very limited amount of data meant that significant errors

could exist.

A sensitivity analysis was therefore required, and this was carried out as part of Sec-

tion 6.3 – Hypothetic Testing of the Model.

Somewhat fortunately, portions of the data collected as part of the Meat Research Cor-

poration (MRC) project on feedlot effluent ponds, carried out during 1993 / 1994, and

finally reported in Casey et al, (1997) were available for use in this project, through FSA

Consulting. This enabled some validation of the developed model with real, measured

feedlot effluent pond data.



6.2 Model Application 67

6.2 Model Application

The model was obviously developed around the measured data. The following Sections

(6.2.1 and 6.2.2) report the performance of the model in comparison to the measured

data.

It is again noted that the model was developed on data acquired from the primary

holding pond at both feedlots, and as such the model is only applied to this pond.

6.2.1 Feedlot A

The input values to the model, for Feedlot A, are shown in Table 6.1. The model

analysis data spreadsheet is included in Appendix B.

The inflow volume was determined using MEDLI, and the initial pond volumes were

estimated from photographs taken during the sampling period and the physical di-

mensions of the ponds, as detailed in Chapter 3. The ambient temperature data was

recorded using an automatic weather station installed on-site, which returns daily (24

hour) average ambient temperature. The average ambient temperature used in the

model is an average of the daily average ambient temperatures recorded for the days

of the rainfall event. The Peak Day is read from Table 5.1 in Chapter 5, dependent

on the daily average ambient temperature, and is referent to the first day of the rain

event. The baseline odour emission rate is the average odour emission rate found during

odour sampling prior to the inflow event, as part of the greater feedlot odour project

undertaken by FSA Consulting.

The data used as input for the model, especially the estimates of inflow and initial

volume, were only able to be quantified to an accuracy of ±0.5 ML. This was not

expected to impact the accuracy of the model in light of the limitations experienced

throughout the course of this project, and the simplicity of the chosen input parameters.

The same applies for the data used in the modelling for Feedlot B, as the data was

attained in the exact same fashion.
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Table 6.1: Feedlot A – Input Values for Pond Odour Model
Parameter Units Value

Initial Pond Volume ML 0
Inflow Volume ML 33.5
Inflow Ratio 12.0∗

Average Ambient Temperature °C 20.4
Peak Day Days Since Rain 5
Baseline Odour Emission Rate ou/s.m2 5

Figure 6.1: Feedlot A, Primary Holding Pond – Measured vs Modelled
Odour Emission Rate

As the primary holding pond at Feedlot A was initially empty, the ratio of existing

pond volume to inflow volume should theoretically be infinite (any real number divided

by zero equals infinity). This is impossible to include in any model. As a result, the

ratio of existing to inflow volume was capped at the value of 12, and is marked in

Table 6.1 by an asterisk (∗). This value was chosen as it is arguably the highest ratio

that would be seen in reality at most feedlots (after an inflow event).

A graphical representation of the performance of the model (i.e. its goodness of fit

to the measured data) for Feedlot A can be seen in Figure 6.1. The actual data is

reproduced in Table 6.2.
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Table 6.2: Feedlot A, Primary Holding Pond – Measured vs Modelled Odour
Emission Rate Data

Date No. Days After Inflow Measured OER Modelled OER
(ou/s.m2) (ou/s.m2)

8 Dec 2003 3 132 93
10 Dec 2003 5 578 656
12 Dec 2003 7 269 417
15 Dec 2003 10 161 212
17 Dec 2003 12 122 136
19 Dec 2003 14 76 88
22 Dec 2003 17 105 47
8 Jan 2004 34 57 6

Table 6.3: Feedlot B – Input Values for Pond Odour Model
Parameter Units Value

Initial Pond Volume ML 7
Inflow Volume ML 31.9
Inflow Ratio 4.6
Average Ambient Temperature °C 11.4
Peak Day Days Since Rain 8
Baseline Odour Emission Rate ou/s.m2 23

6.2.2 Feedlot B

The input values to the model, for Feedlot B, are shown in Table 6.3.

The input parameter values were determined in the exact same way as for Feedlot

A (described in Section 6.2.1). The model analysis data spreadsheet is included in

Appendix B.

The primary holding pond at Feedlot B did contain some effluent prior to the inflow

event. As a result, an actual ratio of existing to inflow effluent was able to be generated.

A graphical representation of the performance of the model (i.e. its goodness of fit

to the measured data) can be seen in Figure 6.2. The actual data is reproduced in

Table 6.4.
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Figure 6.2: Feedlot B, Primary Holding Pond – Measured vs Modelled
Odour Emission Rate

Table 6.4: Feedlot B, Primary Holding Pond – Measured vs Modelled Odour
Emission Rate Data

Date No. Days After Inflow Measured OER Modelled OER
(ou/s.m2) (ou/s.m2)

3 Oct 2003 2 99 93
7 Oct 2003 6 167 195
9 Oct 2003 8 454 410

12 Oct 2003 11 374 321
14 Oct 2003 13 295 274
16 Oct 2003 15 227 234
23 Oct 2003 22 124 138
30 Oct 2004 29 148 85
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6.2.3 Discussion – Model Accuracy

The model over predicts the peak odour emissions for Feedlot A, and struggles to

reproduce the rapid decline in odour emissions following the peak. It is seen that there

is a slight increase in the actual odour emissions again after 17 days, however this is

not explained as there was no further inflow event in the sampling period. The model

would better fit this tail curve if this slight increase was not present.

At Feedlot B, the model slightly under predicts the peak odour emissions, and under

predicts the odour emissions for the first part of the tail curve. After this point the

model performs well, however there is again an increase in the odour emissions that

serves to decrease the goodness of fit of the model.

It was difficult to develop a model that would accurately reproduce both of these

particular patterns, as they are quite different.

At Feedlot A, the rise and fall of odour emissions is much faster (with a higher peak

odour emission rate) than that at Feedlot B, where the odour emissions remained

elevated for a much longer period of time. This posed a problem, as the model had to

be compromised somewhat to fit both measured patterns of odour emissions.

The actual goodness of fit for both feedlots is quantified in Table 6.5. The table lists

the measured values of odour emission rate, the modelled values and the sum of squares

error (SSE). The squares error is the difference between the actual and modelled values

of odour emission rate, squared. The differences are squared in order to maintain

positive values, which when summed, gives a better indication of the total error. The

actual error is also stated, given as a percentage of the modelled odour emission rate.

The actual error helps to keep the magnitude of the squares error in perspective.

As can be seen in Table 6.5, there is a reasonable spread of actual error magnitudes.

However, there are many errors above 15%, which indicates that the model does not fit

all that well to the measured data. The largest error is 89.7% of the measured value,

which is very excessive. If we consider that the contribution to the SSE of this value

is only 6.8%, it is easy to see why the squares error needs justification with the actual
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Table 6.5: Error Analysis - Both Feedlots
Meas. OER Mod. OER Squares SSE Contribution Actual Error
(ou/s.m2) (ou/s.m2) Error to Total SSE (%) (% of Mod. OER)

Feedlot
A 98.50 93.31 26.9 0.3 5.3

166.75 194.66 779.0 7.7 -16.7
454.15 409.94 1954.7 19.4 9.7
373.90 321.18 2779.6 27.6 14.1
294.95 273.63 454.5 4.5 7.2
227.30 233.66 40.5 0.4 -2.8
123.90 137.69 190.3 1.9 -11.1
147.60 85.44 3863.4 38.3 42.1

Total 10088 100.0
Feedlot

B 98.50 93.31 1521.7 4.0 29.6
166.75 194.66 6001.5 15.6 13.4
454.15 409.94 21909.6 57.0 55.1
373.90 321.18 2615.0 6.8 31.7
294.95 273.63 217.5 0.6 12.1
227.30 233.66 145.3 0.4 15.8
123.90 137.69 3377.0 8.8 55.4
147.60 85.44 2620.4 6.8 89.7

Total 38408 100.0

error.

Looking at the sum of squares error in isolation, we can see that there are some contri-

butions higher than 20%. Hence if it were possible to reduce the error of these values,

then the total SSE would be reduced considerably. However, to improve the overall fit

of the model, the actual error of each of the individual values would also need to be

reduced.

The model generally is a reasonable, but not excellent fit to the measured data. The

differences in the measured odour emissions patterns between the two feedlots are too

significant to achieve a better fit.
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Figure 6.3: Effect of Modifying the Peak Day Whilst Holding the Inflow
Ratio Constant at 5:1

6.3 Hypothetic Testing of the Model

The model was subjected to variations in parameters to assess its robustness, and

to determine the limits under which the model would return sensible values of odour

emission rate. As the model is relatively simple, this process was relatively easy, with

few parameters needing analysis.

The parameters that were analysed were the inflow ratio and the days to peak odour

emission rate. In Figure 6.3, the peak day is changed while the inflow ratio is held

constant at an intermediate value of 5:1.

Figures 6.4 and 6.5 show the effects of changing the inflow ratio whilst holding the peak

day constant at 5 and 8, respectively. The peak day values of 5 and 8 days were those

encountered during the project, and it is expected that the number of days to peak for

most inflow events would fall within, or very close to, this range.
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Figure 6.4: Effect of Modifying the Inflow Ratio Whilst Holding the Peak
Day Constant at (Day) 5

Figure 6.5: Effect of Modifying the Inflow Ratio Whilst Holding the Peak
Day Constant at (Day) 8
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6.3.1 Discussion – Model Robustness and Limits

Inflow Ratio

The model was shown to be fairly robust, with uniform patterns of odour emissions for

most inflow ratios. However, the lower values of inflow ratio (i.e. ratios of 1:1 and 3:1)

showed trends that were not consistent with the measured data. These values of inflow

ratio had lower peak odour emission rates, which was expected, however the tail curve

was considerably flat, with higher than expected odour emission rates towards the end

of the trial period. In fact the odour emission rate at the end of the period for these

values of inflow ratio were higher than the emission rates for the higher inflow ratios.

It was expected that the lower inflow ratio curves would return to the baseline odour

emission rates faster than the higher inflow ratio curves.

All attempts to rectify this anomaly failed. The reason that the model behaves in this

manner is because the lower inflow ratio at Feedlot B displayed a broader odour emission

rate curve, and the model was written to accommodate this. Hence even lower values

of inflow ratio exacerbate this. Perhaps the odour emission rate curve from Feedlot

B was partially unique in the fact that it maintains a higher level of odour emission

rate for a longer time, and this has adversely impacted the development of the model.

However, this cannot be substantiated, and the model could only be written according

to the data available.

It is proposed that these lower inflow ratios cannot be justified as ‘significant’ inflows,

hence the model does not return intuitive results. Obviously this was not supported

through the measured data, and is merely a supposition.

Peak Day

Modifying the peak day served to shift the time to peak, and the resulting peak odour

emission rate. Decreasing the peak day parameter, and consequently shortening the

time elapsed to the peak emission rate increases the peak of the curve, resulting in a

much steeper rising limb. The recession (tail) curves all displayed the same curvature

as the inflow ratio was held constant (the inflow ratio is the only input parameter for



6.4 Model Validation Using Previous Research Data 76

the recession curve). This is consistent with the measured data, with Feedlot A’s higher

peak odour emission rate coinciding with a faster rise to that peak, as compared to

Feedlot B’s slower rise to a lower peak emission rate.

Reducing the peak day parameter outside the range experienced in this project (between

5 and 8 days) delivers intuitive results, however it is difficult to support this with no

data available. It is obvious that reducing the peak day to a very short interval (i.e.

2 days) results in a very steep rising limb, and a perhaps inconceivable peak odour

emission rate (near 750 ou/s.m2).

The model was written to return steadily decreasing peak odour emission rates with

longer times to peak, however this does not occur with times to peak of over 10 days.

A peak day of greater than 10 returns a higher peak odour emission rate as compared

to shorter time intervals to peak, and the trend continues with higher values of peak

day. Hence the model will only return intuitive results when used within the range of

3 - 9 days to peak.

6.4 Model Validation Using Previous Research Data

An attempt to validate the model was made using the data collected by Casey et al

(1997). In that project, initial and inflow volumes were collected, along with tempera-

ture and rainfall data, in addition to the odour emissions data collected. This enabled

the model developed in this project to be applied to these datasets. However, it must

be remembered that the data collected during the early 1990s for the MRC project

was taken from old style feedlots. Today’s modern feedlots operate much differently

to older style feedlots (see Chapter 1), especially with regard to odour generation, and

while it is known that the patterns of odour emissions are similar between the two, the

determining parameters may have changed.

The input data used in the modelling of the feedlot ponds from the MRC project

is shown in Table 6.6. It is noted that the baseline odour emission rate data was

not available from this earlier work; and as such it was assumed (as an average of

the measurements from all primary and secondary ponds) from the work done in this
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Table 6.6: MRC Input Data used in Validation of the Odour Emissions
Model

Parameter Units Value
Feedlot 1 Feedlot 2 Feedlot 3 Feedlot 3b

(Pond 1) (Pond 2)
Inflow Ratio dim. 1.44 1.92 2.11 2.11
Avg Ambient Temp °C 20.9 21.8 21.8 21.8
Peak Day Days 5 5 5 5
Baseline OER ou/s.m2 5 5 5 5

Figure 6.6: Feedlot 1, MRC Project – Measured vs Modelled Odour Emis-
sion Rate

project.

The fit of the model to the measured data at all feedlots is shown in Figures 6.6 to 6.9.

6.4.1 Discussion – Validity of the Model

It can be clearly seen that the model fails to reproduce the measured data from the

MRC project to any sort of accuracy. This could be attributed to the fact that the data

was collected from feedlots differing widely in their management (‘old’ versus ‘new’ style

feedlots) and the fact that the model is quite simple and fails to adequately address

what is happening in reality.
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Figure 6.7: Feedlot 2, MRC Project – Measured vs Modelled Odour Emis-
sion Rate

Figure 6.8: Feedlot 3 (Pond 1), MRC Project – Measured vs Modelled
Odour Emission Rate
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Figure 6.9: Feedlot 3 (Pond 2), MRC Project – Measured vs Modelled
Odour Emission Rate

The data from the MRC project was collected from a cruder (relative to today’s tech-

nology) olfactometer, and was done according to a different standard (or operating

procedure). This would introduce further variability into the odour emissions data,

therefore reducing its accuracy. The data from the work carried out during the early

1990’s shows similar patterns of odour emission rate, however the patterns are somewhat

more ‘erratic’ in comparison to the patterns measured in this project. The similarities

and differences between the patterns of emission rate between the two data sets can be

better appreciated by considering Figures 6.10 and 6.11. A discussion and comparison

of the current project and the MRC project effluent analysis data is also included as

Appendix D, however whilst there were differences found, the impact on the model

is limited due to a lack of supporting data. The differences in the data do show the

change in feedlot pad management that has occurred in the past decade, as detailed in

Chapter 1. (The actual odour emissions data is included in Appendix B).

The limited applicability of this model to other data sets was to be expected with

reference to the many particular limitations of the modelling process, and the limited

data available with which to construct the model.
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Figure 6.10: Comparison of Odour Emission Rate Patterns - Feedlots A and
B, and 1 and 2

Figure 6.11: Comparison of Odour Emission Rate Patterns - Feedlots A and
B, and 3 (Pond 1) and 3 (Pond 2)
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6.5 Conclusion

The model developed has been shown to fit to the measured data, to a limited de-

gree of accuracy, as shown through the error analysis. The model does reproduce the

odour emission rates curves from both feedlots well, and the model is robust enough

to withstand substantial changes in its parameter values, however it is apparent that

there is a minimum level of inflow ratio that will produce a meaningful pattern of odour

emission rate. The data measured in this project has also suggested that there is an

upper limit; the conditions prior to the inflow event at Feedlot A should, in theory,

produce the highest rates of odour emissions (no existing effluent in the pond, hence

limited bacterial population present).

The model fails to reproduce the measured data from the MRC project, however this

was expected considering the significant differences in management that have occurred

in the decade since.

The model performs as well as could be expected given the limitations imposed through-

out throughout the project, and the extremely limited data available.



Chapter 7

Conclusions and Further

Research

It is clear that a model to predict the odour emissions from feedlot ponds would be

advantageous to better reproduce the changing odour emissions from feedlots. Whilst

undisturbed feedlot effluent ponds are a minor source of odour at a feedlot, after an

inflow the odour emission rates can rise above that of the feedlot pad surface. Despite

this, no research had previously been carried out into developing a model to reproduce

the variability of odour emissions from ponds. This project set out to develop such

a model, however the limited number of data sets and supporting data meant that a

comprehensive model could not be developed.

Whilst accurate odour emissions data was collected, and the sequence of odour samples

taken was adequate, the amount of supporting data collected was limited, or unable

to be used in the modelling. This became more apparent as the analysis of the data

continued, and the factors influencing the odour emissions became clear. In particular,

real time measures of the change in pond volume would have been advantageous, as

the model relied on the accuracy of this data (which was estimated at ± 0.5 ML). This

accuracy was accepted for use in this project. The estimates of inflow volume were

made using MEDLI, and these volumes were expected to be at least as reliable as the

estimates of initial pond volume.
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The effluent data collected was not able to be used in the modelling. This was due to

the fact that a complete set of effluent samples were taken from Feedlot B only, and no

direct comparison could be made with Feedlot A. In addition to this, previous research

into feedlot effluent pond chemistry is limited, and inconclusive as to the connection

between pond condition and the odour emissions.

The measured data showed differences in the patterns of odour emissions. The cooler

Feedlot B displayed a broader pattern of odour emissions, with the warmer Feedlot A

showing a sharp peak, and a faster return to lower values of odour emissions. The dif-

ference in climate between the two feedlots was considered responsible for the different

odour emissions patterns.

An empirical model that fitted the measured odour emission rate pattern from both

feedlots was developed, taking as input the inflow ratio, the number of days since rain

and the ambient temperature. The model performed reasonably well, with a good fit

to the measured data. However, the model was compromised somewhat so that the two

very different patterns of odour emissions could be reproduced. Hence some significant

errors between some individual measured and modelled data points existed, and this

error was not able to be improved.

The model was applied to the data measured in the MRC project. The model failed

to accurately reproduce the pattern of odour emissions recorded, however this was

expected. The change in feedlot management over the period of time since the MRC

research has been substantial, and the factors influencing the odour emissions may have

changed significantly. The limited applicability was also attributed to the simplicity of

the model.

7.1 Success of the Project

The project was successful in the fact that a model to predict the odour emission rate

from effluent ponds after an inflow was developed. However, the fact remains that

the model is essentially empirical, and is far from comprehensive in regard to input

parameters. This was no fault of the project itself; every effort was made with the data
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available. However, for a comprehensive model to be developed, more data would be

required, in terms of independent data sets, supporting pond chemistry data and more

accurate (real-time) measures of pond volumes, inflows and outflows. A research effort

of the magnitude required to achieve this is far beyond the scope of a final year research

project, and may even challenge the resources of an industry body.

7.2 Further Research into this Area

Future, further research to model the odour emissions from primary holding ponds

would obviously need to overcome the practical limitations experienced in this project

(as discussed in Chapter 5) and cover the ideas to improve the model as presented

in Section 7.1. A committed research effort of this nature would have to include the

modelling of the sedimentation basin and secondary holding pond, to complete the

picture of odour emissions from feedlot effluent treatment (pond) systems.

Research, perhaps not separately, would also need to be conducted to better determine

the driving processes of odour emissions from feedlot ponds under these conditions. It

is considered that not enough is known about feedlot pond chemistry, and such infor-

mation would be invaluable in modelling the odour emissions. Such pond information

may also lead to new developments in feedlot effluent pond management, from a odour

minimisation perspective.

This research would be an inevitable step in further understanding feedlot pond odour

emissions as the industry strives to improve its overall odour performance.
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University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG 4111 / 4112 Research Project

PROJECT SPECIFICATION

FOR: Nathan Andrew HEINRICH

TOPIC: PREDICTION OF FEEDLOT EFFLUENT POND ODOUR

EMISSION AFTER SIGNIFICANT INFLOW

SUPERVISORS: Dr. Rod Smith

Dr. Peter Watts, FSA Consulting

ENROLMENT: ENG 4111 – S1, D, 2004

ENG 4112 – S2, D, 2004

PROJECT AIM: This project aims to investigate the variation in

odour emissions from feedlot effluent ponds following significant

inflow, defining the major factors that influence the odour

emissions and attempts to develop a model to predict odour

emission rate.

SPONSORSHIP: FSA Consulting

PROGRAMME: Issue B, 12 October 2004

OBJECTIVES:

1. Research the background information available relating to feedlot odour emissions

in Australia (concentrating on, but not restricted to, feedlot effluent ponds), odour

measurement and olfactometry and feedlot odour emissions models.

2. Assist in the collection of odour samples from two commercial feedlots, and collect

data as appropriate.

3. Analyse field data and assess the major factors influencing the odour emission

rate.
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4. Develop a model to predict the odour emission rate from the primary effluent

pond after inflow.

AGREED:

(Student) , (Supervisors)

/ / / / / /
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Figure B.1: Feedlot A – Odour Emission Rate Data Analysis Spreadsheet
(Page 1)
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Figure B.2: Feedlot A – Odour Emission Rate Data Analysis Spreadsheet
(Page 2)
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Figure B.3: Feedlot B – Odour Emission Rate Data Analysis Spreadsheet
(Page 1)
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Figure B.4: Feedlot B – Odour Emission Rate Data Analysis Spreadsheet
(Page 2)
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Figure B.5: Feedlot A – Model Analysis Spreadsheet
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Figure B.6: Feedlot B – Model Analysis Spreadsheet
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Figure B.7: MRC Project Odour Emission Rate Data
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Effluent Analyses from Primary

Holding Ponds - Post Inflow
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Figure C.1: Feedlot A – Effluent Analysis(2 pages)
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Figure C.2: Feedlot B – Effluent Analysis (5 pages)
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Appendix D

Effluent Analyses – Comparison

of Current and MRC Project

Data
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Figure D.1: Comparison between Current Project and MRC Project – pH

The comparison of the effluent data does show differences in all the parameters, as

shown graphically in Figures D.1 to D.7. The actual data is included in Figure D.8.

The pH was approximately 1 point higher in this project, and the EC was lower by

around 10 dS/m.

The lower EC value in the current projects’ data was expected, as the inflow was very

large at both feedlots, thereby diluting the initial pond contents significantly with fresh

(lower EC) effluent.

The ammonia nitrogen was lower in this project than all cases from the MRC data.

There was no discernable difference in the total phosphorous or suspended (or dissolved)

solids content, however the volatile solids was lower in the current data, as with the

total Kjedahl nitrogen.

These comparisons suggest that the organic load on the effluent was less in this project

than in the MRC project. This shows the change in pad surface management that has

occurred in the past decade (increased pen cleaning frequency, less manure depth on

pad) as there is less manure (organic matter) in the runoff.
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Figure D.2: Comparison between Current Project and MRC Project – EC

Figure D.3: Comparison between Current Project and MRC Project – Am-
monia Nitrogen
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Figure D.4: Comparison between Current Project and MRC Project – Total
Phosphorous

Figure D.5: Comparison between Current Project and MRC Project –
Volatile Solids
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Figure D.6: Comparison between Current Project and MRC Project – Sus-
pended Solids

Figure D.7: Comparison between Current Project and MRC Project – Total
Kjedahl Nitrogen
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Figure D.8: Current Project and MRC Project – Effluent Data


